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Abstract

We derive high-dimensional Gaussian comparison results for the standard V -fold
cross-validated risk estimates. Our results combine a recent stability-based argument for
the low-dimensional central limit theorem of cross-validation with the high-dimensional
Gaussian comparison framework for sums of independent random variables. These
results give new insights into the joint sampling distribution of cross-validated risks in
the context of model comparison and tuning parameter selection, where the number
of candidate models and tuning parameters can be larger than the fitting sample size.
As a consequence, our results provide theoretical support for a recent methodological
development that constructs model confidence sets using cross-validation.

1 Introduction

Cross-validation (Stone, 1974; Allen, 1974; Geisser, 1975) is among the most popular
procedures for estimating the out-of-sample predictive performance of statistical models
fitted on data sets randomly sampled from a population. Generally speaking, cross-validation
estimates the out-of-sample prediction accuracy by fitting and assessing a fitted model
on separate subsets of data. One of the most common forms of cross-validation is V -fold
cross-validation, where data are partitioned into V folds (sets) of identical size; then, each
fold is used to assess the error of the model fitted using the other V − 1 folds. Finally, the
average of all V estimates is used to create the cross-validation risk estimate.

Cross-validation is commonly used in statistical learning problems wherein researchers
either compare the cross-validated risk of multiple models or compare a cross-validated
risk against some baseline method with known risk. See Picard and Cook (1984); Arlot
and Celisse (2010) for examples. The popularity and simplicity of cross-validation has
inspired numerous research articles seeking to better understand its theoretical properties.
In particular, positive results have been established for parameter estimation following the
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model selected by cross-validation, including risk consistency and parameter estimation
consistency. See Stone (1977b); Homrighausen and McDonald (2017); Chetverikov et al.
(2016); Celisse (2014) for various examples from linear regression to nonparametric density
estimation problems.

Despite the consistency results established for parameter estimation, understanding the
model selection properties of cross-validation has been a challenging task, with most existing
results being negative. In the early work of Stone (1977a), it is shown that cross-validation
is similar to AIC, and hence prone to choosing overfitted linear regression models. Such
an overfitting tendency of cross-validation has been further studied in Shao (1993); Zhang
(1993); Yang (2007), which show that in the classical regime, cross-validation often produces
inconsistent model selection unless a very unrealistic train-validate ratio is used. Indeed,
these ratios are so extreme that they can never be satisfied by standard V-fold cross-
validation. Furthermore, the unsatisfactory model selection performance of cross-validation
has been widely observed in practice, and many heuristic or context-specific adjustments
have been proposed, such as Efron and Tibshirani (1997); Tibshirani and Tibshirani (2009);
Yu and Feng (2014).

The model selection inconsistency of cross-validation can be understood as an instance
of the “winner’s curse.” Since the cross-validated risk of each model is still a random
variable, a particular model may have the smallest cross-validated risk because its realized
random fluctuation happens to be small while the true optimal model has a much larger
fluctuation. Such an intuition calls for a more precise understanding of the sampling
distribution of cross-validated risks. A main challenge in studying the sampling distribution
of cross-validated risk is the global and heterogeneous dependence among each individual
empirical loss function. Bousquet and Elisseeff (2002) proved convergence of cross-validated
risk to the corresponding population quantity under an expected leave-one-out loss stability
condition. The population target of cross-validated risk and its variability is further studied
in Bates et al. (2021).

In this work, we study the simultaneous fluctuations of the cross-validated risks of many
models around their mean values. In particular, we establish high-dimensional Gaussian
comparison results for the cross-validated risk vector indexed by a collection of models,
whose cardinality can potentially be very large. Our main contributions are two fold.
First, we extend the low-dimensional central limit theorem by Austern and Zhou (2020)
to the high-dimensional case, combining their cross-validation error analysis with the
high-dimensional Gaussian comparison framework by Chernozhukov et al. (2013). Second,
we provide theoretically justifiable model selection confidence sets using cross-validation,
answering an open question left in the methodological work Lei (2020).

Our theoretical development extends and merges two lines of current research: central limit
theorems for cross-validation and high-dimensional Gaussian comparisons. Low-dimensional
central limit theorems for cross-validation have been developed recently by Austern and
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Zhou (2020) and Bayle et al. (2020). While these low-dimensional results provide very useful
insights for the estimation of prediction risks of individual models, they cannot be used to
construct simultaneous confidence sets when many candidate models are being compared.
This is of particular interest because in practice, cross-validation is often used to compare
and select from a large collection of models or tuning parameters. Therefore, in order to
understand the behavior of cross-validation in selecting from many models, it is necessary
to consider the joint sampling distribution of the cross-validated risks. In the case of sums
of independent random vectors, high-dimensional Gaussian comparison has been developed
in the milestone work of Chernozhukov et al. (2013) (see also Bentkus, 2005). Since then,
similar results have been developed for U -statistics (Chen, 2018) and stochastic processes
with weak dependence such as mixing or spatial process (Kurisu et al., 2021; Chang et al.,
2021). However, these extensions do not cover the cross-validation case, where all terms in
the summation are dependent on each other and have similar magnitudes of dependence,
violating the sparsity of dependence (U -statistics) and fast decaying dependence (mixing
and spatial processes). In fact, a different extension of the Gaussian comparison result
is needed for cross-validation, which borrows the martingale decomposition and stability
conditions in Austern and Zhou (2020).

Stability conditions play a key role in developing the Gaussian comparison results in this
work. Outside of the analysis of cross-validation, the importance of stability has been
studied in the broader statistics and machine learning communities (Yu, 2013; Meinshausen
and Bühlmann, 2010; Bousquet and Elisseeff, 2002; Hardt et al., 2016). To develop our
results, we require more subtle versions of stability than in the existing literature, including
second order stability, stability in sub-Weibull tails, and stability of difference loss functions.
We provide rigorous justifications of these stability conditions for the stochastic gradient
descent algorithm and a prototypical non-parametric regression setting.

2 Preliminaries

Consider iid data X = (X0, X1, ..., Xn) with Xi ∈ X . We would like to simultaneously
study the performance of p learning algorithms through the framework of V -fold cross-
validation.

For notation simplicity, we assume V evenly divides n. For v ∈ [V ], let Iv = {n(v − 1)/V +
1, ..., nv/V } be the index that corresponds to the vth fold of data. Let ñ = n(1−1/V ) be the
training sample size used in V -fold cross-validation. For each r ∈ [p], let ℓr(·; ·) : X×X ñ 7→ R
be a loss function. Intuitively, we should think ℓr(x0; (x1, ..., xñ)) as the loss function
evaluated at x0 of a fitted model using training data (x1, ..., xñ). Here the index r denotes
a particular model or tuning parameter value. This notation covers both supervised and
unsupervised learning.

1. In supervised learning, each point can be thought of as x = (y, z) ∈ Y ×Z where z is
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a vector of covariates and y is the response variable. The loss function can often be
written more concretely as

ℓr(x0; (x1, ..., xñ)) = ρ(y0, f̂r(z0)) ,

where f̂r(·) : Z 7→ Y is a regression function that predicts y from z, trained using the
rth model/tuning parameter with input data (x1, ..., xñ), and ρ(·, ·) : Y2 7→ R is a loss
function measuring the quality of predicting y using f̂r(z), such as squared loss, 0-1
loss, and hinge loss.

2. In unsupervised learning,

ℓr(x0; (x1, ..., xñ)) = ρ(x0; f̂r) ,

where f̂r is a function describing the distribution ofX trained from the rth model/tuning
parameter with the input data (x1, ..., xñ), and the function ρ is a loss function as-
sessing the agreement of the sample point x0 and the fitted probability model f̂r.
Examples of ρ include the negative likelihood in density estimation and the proportion
of total variance explained in dimension reduction.

In model selection and parameter tuning, a particularly interesting scenario is when the
number of models being compared is large.

For each r, the V -fold cross-validated risk is

R̂cv,r = n−1
n∑
i=1

ℓr(Xi;X−vi) . (1)

where X−v denotes the sub-vector of X excluding the vth fold, and vi ∈ [V ] is such that
i ∈ Ivi .

It is natural to expect R̂cv,r to approximate the true average risk of the fitted model:

R̃r =
1

V

V∑
v=1

Rr(X−v) ,

where
R̃r(X−v) = E [ℓr(X0;X−v)|X−v] ,

is the true risk of the rth model fitted using input data X−v.

The quantity R̃r(X−v) still depends on the input data X−v and hence is a random variable
itself. It would be natural to consider its expected value

R∗
r = ER̃r(X−v) = Eℓr(X0;X−1) .
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As a statistical inference task, model comparison also involves uncertainty quantification
of risk point estimates, and one would hope to establish central limit theorems of the
form √

n(R̂cv,r − µr)

σr
⇝ N(0, 1)

with µr being either R̃r or R
∗
r and some appropriate scaling σr (Austern and Zhou, 2020;

Bayle et al., 2020).

In the context of model comparison or tuning parameter selection, these individual normal
approximations would have limited practical use. For example, in our numerical example in
Section 4.1, individual confidence intervals fail to simultaneously cover the targets when
when p is moderately large. To cover this gap between theory and practice, we seek to
establish a high-dimensional Gaussian approximation in a similar fashion as in Chernozhukov
et al. (2013):

sup
z∈R

∣∣∣∣P(max
1≤r≤p

√
n(R̂cv,r − µr) ≤ z

)
− P

(
max
1≤r≤p

Yr ≤ z

)∣∣∣∣→ 0 (2)

for some centered Gaussian random vector Y = (Y1, ..., Yp) with matching covariance.

3 Main results

In this section, we establish a high-dimensional Gaussian approximation result with random
centering. In particular, we prove (2) with µr = R̃r. In the following subsections, we present
and discuss the assumptions required for this result and provide its full statement as a
theorem in Section 3.3.

3.1 Symmetry and moment conditions on the loss function

The idea of cross-validation relies on independence and symmetry among data points. We
consider the following symmetry and moment conditions on the loss functions ℓr.

Assumption 1 (Symmetry and moment condition on ℓr). For each r ∈ [p], the loss function
ℓr(·; ·) satisfies

(a) ℓr(x0;x1, ..., xñ) is symmetric in (x1, ..., xñ).

(b) E
{
[ℓr(X1;X−1)−Rr(X−1)]

2
}
≥ σ2 for some constant 0 < σ.

Part (b) essentially assumes that the randomly centered cross-validated loss function has
non-degenerate conditional variance. This makes intuitive sense, as we would expect the
resulting confidence interval to have length at the scale of 1/

√
n. For example, if ℓr is a

regression residual, then this lower bound is at least as large as the prediction risk of the
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ideal regression function. In the additional assumptions below, we will also have the upper
bound on the variance term.

3.2 Stability and tail conditions

A key consideration from Austern and Zhou (2020) in their low dimensional central limit
theorems for cross-validation is the stability of the loss function and the average risk when
one input sample point is replaced by an iid copy. In the high dimensional case, we need
the loss function to be stable in a uniform sense across all p candidate models indexed by
r ∈ [p]. Thus, we will consider stability conditions in the form of stronger tail inequalities
instead of the moment conditions used for the low dimensional case. Such stronger tail
conditions are common in high dimensional central limit theorem literature, such as in
Chernozhukov et al. (2013).

We use sub-Weibull concentration to describe the required tail behaviors of random vari-
ables.

Definition 1 (Sub-Weibull Random Variables). Let K be a positive number, we say a
random variable X is K-sub-Weibull (K-SW for short) if there are positive constants (a, b, α)
such that

P
(
|X|
K

≥ t

)
≤ ae−bt

α
, ∀ t > 0 .

This definition generalizes the well-known sub-exponential and sub-Gaussian distributions,
and has been systematically introduced in Vladimirova et al. (2020); Kuchibhotla and
Chakrabortty (2018).

Remark 1. Unlike common practices in the literature, our notation of the sub-Weibull
tail inequality only focuses on the scaling K. We do not keep track of the constants a, b, α,
which can vary from one instance to another as long as they stay bounded and bounded away
from zero. It is easy to check that our notion of sub-Weibull is invariant under constant
scaling: if X is 1-SW, then X is c-SW for all positive constant c. Aside from the scaling K,
the second (and only) important parameter in sub-Weibull tail inequality is the exponent α.
In the literature, it is more common to write (K,α)-SW. Our proof can be adapted to keep
explicit track of the constant α in each instance at the cost of more complicated bookkeeping,
but that does not qualitatively change the results.

In our theoretical developments, the dependence on logarithm terms may be complicated,
as it involves the sub-Weibull constant α, which may vary between lines. For brevity of
presentation, we absorb such logarithm terms into the Õ(·) notation. Where A ≤ Õ(B)
means that there are positive constants c1, c2 independent of (n, p) such that A ≤ c1 log

c2(n+
p)B.
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To introduce the stability conditions, let X ′
i be iid copies of Xi for 1 ≤ i ≤ n and Xi be

the vector obtained by replacing Xi with X ′
i. For any function f(X), define ∇if(X) =

f(X)− f(Xi).

The main stability conditions involved in our normal approximation bounds are the follow-
ing.

Assumption 2. There exists ϵℓ = n−cℓ for some cℓ ∈ (0, 1/2] such that

(a) For all i ∈ [ñ], r ∈ [p], ∇iℓr(X0,X−1) is n
−1/2ϵℓ-sub-Weibull.

(b) For all 1 ≤ i < j ≤ ñ, r ∈ [p], ∇j∇iℓr(X0,X−1) is n
−3/2ϵℓ-sub-Weibull.

(c) For all r, ℓr(X0,X−1) is 1-sub-Weibull.

Assumption 2 requires that the first order difference ∇iℓr(X0,X−1) has a scaling no larger
than ϵℓn

−1/2, the second order difference ∇j∇iℓr(X0,X−1) has a scaling no larger than
ϵℓn

−3/2, and the original loss function ℓr has a constant scaling. The sub-Weibull tail
ensures that with high probability all such quantities will not exceed their scalings by more
than a poly-logarithm factor. We require ϵℓ ∈ [n−1/2, 1), as this simplifies the presentation
of the results and is also the most natural range of stability. Specifically, the approximation
error bounds in our main theorems become meaningless if ϵℓ > 1, and ϵℓ ≪ n−1/2 would be
impractical, as it implies changing one sample point will incur a change less than 1/n in
the loss.

We further remark that the scaling assumption on the second order difference
∇j∇iℓr(X0,X−1) is stronger than that in Austern and Zhou (2020) by a factor of

√
n. This

is due to a fundamental difference between the low dimensional CLT and high dimensional
Gaussian comparison, where the former only requires controlling the second moment of
error terms, while the latter requires controlling the supremum of many such error terms.
More specifically, define the randomly centered loss at Xi

Kr,i = ℓr(Xi;X−vi)−Rr(X−vi) , (3)

and
Dr,i =

∑
j /∈Ivi

∇iKr,i . (4)

A key result in the low dimensional CLT is that ∥Dr,i∥2 ≲ ϵℓ provided ∥n1/2∇iℓr(X0,X−1)∥2
≤ ϵℓ and n∥∇j∇iℓr(X0,X−1)∥2 ≤ ϵℓ. However, in the high-dimensional regime, we need to
simultaneously control Dr,i for all 1 ≤ r ≤ p, which cannot be guaranteed by a vanishing
second moment on each individual term. Our condition can be relaxed to requiring a similar
∇j∇iℓr(X0,X−1) being n−1ϵℓ-sub-Weibull, provided we can further assume that

Dr,i

∥Dr,i∥2
is 1-sub-Weibull. While this additional assumption certainly seems reasonable in many
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situations, we choose to work with the stronger condition on the second order difference as
presented in Assumption 2, which allows for a more streamlined presentation. Nevertheless,
the stability conditions in Assumption 2 are still practically plausible since we should
typically expect each ∇ operator to reduce the scale of the loss function by a factor up to
n.

In Section 5, we provide two rigorous examples that satisfy the stability conditions, in-
cluding stochastic gradient descent with convex and smooth objective functions, and a
non-parametric regression with sub-Weibull design.

Example 1 (Classical M-Estimator). Consider a parametric loss function ℓ(x0;x1, ..., xñ) =
ℓ(x0; θ̂) with θ̂ estimated from the input data (x1, ..., xñ). Under classical parametric
regularity conditions such θ̂ can be asymptotically linear (Tsiatis, 2006, Chapter 3). Then
we have

θ̂ = θ0 +
1

ñ

ñ∑
i=1

φ(xi) + oP (n
−1/2) .

Intuitively, the first order stability bound for ∇iℓ can be satisfied if the oP (n
−1/2) remainder

term is n−1/2ϵℓ-SW for some ϵℓ = o(1). The second order stability condition would require
more subtle structure within the oP (n

−1/2) remainder term. Austern and Zhou (2020) gave
a formal analysis of the first and second order statbility conditions for M -estimators under
convexity and smoothness.

Example 2 (Penalized Least Squares). Now consider a high dimensional ridge-regression
where we have paired sample points xi = (zi, yi):

β̂ = argmin ñ−1
ñ∑
i=1

(yi − zTi β)
2 + λ∥β∥22 .

When the dimensionality of xi is comparable or smaller than the sample size, it is possible
to argue that the empirical covariance matrix will be well-conditioned with high probability,
and hence changing any one sample point will incur an O(n−1) change in β̂. For a simpler
argument under stronger assumptions, if the sample points are bounded and λ ≫ n−1/2,
then the stability requirement on ∇iℓ holds. If λ≫ n−3/4 then the stability requirement on
∇j∇iℓ also holds.

3.3 Main theorem with random centering

Our first main result is a Gaussian comparison with random centering. In order to state
the result, we need to specify the covariance of the Gaussian vector Y. Using the notation
Kr,0,v = ℓr(X0;X−v)−Rr(X−v), define

σrs,v = E(Kr,0,vKs,0,v|X−v) , 1 ≤ r, s ≤ p ,
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to be the conditional variance/covariance of the loss functions given the fitted model using
input data X−v, and let

σrs = Eσrs,1

be the expected value of σrs,v. Let Σ = [σrs]1≤r,s≤p be the corresponding p× p expected
conditional covariance matrix, and Σv the corresponding random covariance matrix with
entries σrs,v.

We will show that σrs,v ≈ σrs (Lemma B.3) and
√
n(R̂cv − R̃) behaves like a centered

Gaussian vector with covariance matrix Σ.

Theorem 3.1 (High-dimensional CLT for Cross-validation with random centering). Assume
Assumptions 1 and 2 hold, then we have

sup
z∈R

∣∣∣∣P(max
1≤r≤p

√
n(R̂cv,r − R̃r) ≤ z

)
− P

(
max
1≤r≤p

Yi ≤ z

)∣∣∣∣ ≤ Õ
[
n−1/8 + ϵ

1/3
ℓ

]
,

for Y = (Y1, ..., Yp) ∼ N(0,Σ).

Remark 2. Theorem 3.1 implies that the Gaussian approximation error is small if ϵℓ ≲ n−c

for some constant c > 0. The result of Theorem 3.1 can be easily extended to the quantity
maxr |R̂cv,r − R̃r| by applying Theorem 3.1 to the augmented vector (R̂cv − R̃, R̃ − R̂cv)
with the corresponding Gaussian vector (Y,−Y).

Remark 3. In addition to a factor of logc(p+ n) with constant c determined by the sub-
Weibull exponents in Assumption 2, the Õ(·) notation in Theorem 3.1 also contains a factor
that depends on σ, the lower bound of conditional risk standard deviation in Assumption 1.
We suppressed this factor throughout this paper because a Gaussian comparison is practically
most useful when the matching Gaussian process Y is marginally standardized, so that
σ = 1. Otherwise, the maximum will be largely driven by the coordinates with large
variances. Such factors involving σ have been treated as constants in the literature of
high-dimensional Gaussian comparison and anti-concentration of maxima of Gaussian
processes (Chernozhukov et al., 2013, 2015). With more detailed bookkeeping in our proof,
and inspecting the proof of the anti-concentration results in Chernozhukov et al. (2015), the
contribution of σ in the error bound in Theorem 3.1 is a multiplicative factor of O(σ−2).

4 Simultaneous confidence bands for cross-validated risk

In this section we consider various statistical inference tools following from Theorem 3.1,
including constructing simultaneous confidence bands of the average fitted risks and possible
ways to construct confidence sets of the “optimal” model.
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4.1 Confidence bands

Following Theorem 3.1, we consider the coordinate-wise standardized process

√
nΛ−1/2(R̂cv − R̃) ,

where

Λ =diag(σ11, ..., σpp)

is the diagonal submatrix of Σ.

Let Λ̂ and Σ̂ be the natural plug-in estimates (i.e., the average of all the within-fold empirical
covariance matrices) of Λ and Σ. In particular, let ℓ = (ℓ1, ..., ℓp), and Σ̂v be the empirical
covariance of {ℓ(Xi;X−v) : i ∈ Iv}. Then Λ̂ and Σ̂ can be the aggregated estimate.

Σ̂ =
1

V

V∑
v=1

Σ̂v , Λ̂ = diag(σ̂11, . . . , σ̂pp) . (5)

Given a nominal type I error level α ∈ (0, 1), the following fully data-driven procedure
computes a simultaneous normalized confidence band for the vector R̃ with asymptotic
coverage 1− α.

Let ẑα be the upper 1 − α quantile of ∥Z∥∞, with Z ∼ N(0, Λ̂−1/2Σ̂Λ̂−1/2). Given
estimates (Λ̂, Σ̂), ẑα can be approximated efficiently using Monte-Carlo methods. Such a
Monte-Carlo approximation error can be controlled by combining the standard Dvoretsky-
Kiefer-Wolfowitz inequality and anti-concentration of Gaussian maxima. For the sake of
brevity, we use the theoretical value ẑα, which corresponds to the limiting case of infinite
Monte-Carlo sample size.

The simultaneous confidence band for cross-validated risk is

ĈIr =

[
R̂cv,r −

σ̂
1/2
rr ẑα√
n

, R̂cv,r +
σ̂
1/2
rr ẑα√
n

]
, for each r ∈ [p] , (6)

where σ̂rr is the rth diagonal entry of Σ̂ in (5).

Corollary 4.1. Under Assumptions 1 and 2, the confidence intervals constructed in (6)
satisfy

P
(
R̃r ∈ ĈIr , ∀ r ∈ [p]

)
≥ 1− α− Õ(n−1/8 + ϵ

1/3
ℓ ) .
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4.2 Model confidence set

Now, we consider the model/tuning selection problem. Let

r∗ = argmin
r
R̃r

be the index of the candidate model with the smallest average fitted risk. We hope to use
the Gaussian comparison to construct a confidence set for r∗. A simple way to do so is
directly using (4.1):

Â0 =
{
r : R̂cv,r − σ̂1/2rr ẑα/

√
n ≤ min

s
R̂cv,s + σ̂1/2ss ẑα/

√
n
}
. (7)

It is a direct consequence of Corollary 4.1 that

P(r∗ ∈ Â0) ≥ 1− α− Õ(n−1/8 + ϵ
1/3
ℓ ) .

However, Â0 often unnecessarily contains too many models, as it ignores the correlations
among the coordinates of R̂cv.

Following the idea in Lei (2020), we instead consider the following difference based method,
which takes into account the correlations of the cross-validated risks. For each r, consider the

risk difference vector (R̂cv,r− R̂cv,s : s ̸= r), and apply the above framework to ℓ
(r)
s := ℓr−ℓs

to test whether R̂cv,r − R̂cv,s > 0 for some s ̸= r. Here, we are considering a one-sided
hypothesis, so instead of the two-sided confidence band in (6), we consider the one-sided
version.

For each r ∈ [p], consider p− 1 difference loss functions ℓ
(r)
s = ℓr − ℓs for s ∈ [p]\{r}. Now

apply the cross-validation normal approximation theory to the p − 1 standardized loss

functions (ℓ
(r)
s /σ

(r)
ss : 1 ≤ s ≤ p, s ̸= r), where

σ
(r)
st = E

{
Cov

[
ℓ(r)s (X0;X−1), ℓ

(r)
t (X0;X−1)

∣∣X−1

]}
.

Let ẑ
(r)
α be the 1−α quantile of the maximum of the corresponding (p−1)-dimensional Gaus-

sian vector with estimated covariance [Λ̂(r)]−1/2Σ̂(r)[Λ̂(r)]−1/2, where Σ̂(r) = [σ̂
(r)
st ]s,t∈[p]\{r}

and Λ̂(r) is its diagonal version. Then our model confidence set is

Â =

{
r : sup

s ̸=r
R̂cv,r − R̂cv,s − [σ̂(r)ss ]

1/2ẑ(r)α /
√
n ≤ 0

}
. (8)

Proposition 4.2. If the conditionally standardized difference loss functions ℓ
(r)
s −(R̃r−R̃s)√

σ
(r)
ss

satisfy Assumptions 1 and 2 for all r, s, then

P
(
r∗ ∈ Â

)
≥ 1− α− Õ(n−1/8 + ϵ

1/3
ℓ ) .
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Remark 4. Proposition 4.2 resolves an outstanding question about the theoretical justifi-
cation of the V-fold cross-validation with confidence method (CVC Lei, 2020). The proof
is almost identical to that of Therem 1 in Lei (2020) except using the cross-validation
Gaussian approximation (Theorem 3.1), and hence is omitted. Requiring the standardized
difference loss functions to satisfy Assumption 2 is non-trivial, because if the loss functions
ℓr and ℓs are highly correlated, their difference can have very small variance. Intuitively, if
∇iℓr ≍ n−1, for the stability condition to hold for the standardized difference loss we will
need ∥ℓr − ℓs∥2 ≫ n−1/2. Such a slow vanishing requirement on ℓr − ℓs precludes the case
that both model r and model s produce

√
n-consistent estimates. This intuition agrees with

Yang (2007), which suggests that cross-validation may not be model selection consistent
if both candidate models are

√
n-consistent. A simple illustration of this issue is given

in Section 2.3 of Lei (2020). In Section 5, we give a concrete nonparametric regression
example in which the stability conditions hold for the difference losses.

4.3 Numerical Experiments

In this subsection, we numerically verify the claim of Theorem 3.1 as well as the model
confidence sets considered in Section 4.1. We use V = 5 in all simulations and all plotted
values are averaged over 1000 generated data sets.

Simultaneous coverage vs marginal coverage. We first investigate the simultaneous
coverage of confidence bands for the cross-validated risk. To do so, we generate a predictor
matrix Z ∼ N(0, I) and response vector Y = Zβ+ ϵ where ϵ ∼ N(0, σ2I) with σ2 = ∥β∥22/ν
and β is a sparse d-dimensional vector with the first s entries being 1 and the remainder
being 0. We set d = 20, s = 5, and ν = 1000. We then fit lasso regressions across a grid of
50 regularization parameters and generate confidence bands.

Figure 1 shows the simultaneous coverage of a confidence band generated by all point-wise
confidence intervals (left) and the confidence band as specified in (6) at various values of n
and α. We see that the latter method has coverage much closer to the nominal level than
the former. Therefore, the point-wise procedure is insufficient for providing the correct
simultaneous coverage, suggesting that the simultaneous adjustment is indeed necessary.
This simulation also suggests that the coverage of the simultaneous band is not overly
conservative.

The importance of stability. The impact of stability on the quality of Gaussian
approximation of cross-validated risks has been experimented in Austern and Zhou (2020).
Here we provide additional empirical results on this front. Consider confidence intervals for
forward selection in the same setting but with d = 10 and α = 0.05. Specifically, we look at
the point-wise interval coverage of forward selection terminated at different model sizes–one
less than s, one equal to s, and one larger than s. The left plot in Figure 2 shows that at
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Figure 1: Simultaneous coverage of point-wise confidence intervals and the confidence
band from (6). The horizontal dashed lines represent the nominal level given by 1− α.

3 steps, the one-dimensional 95%-confidence interval based on Theorem 3.1 under covers
regardless of the sample size, while at 5 and 7 steps the coverage converges to nominal level
as the sample size increases. This observation is consistent with the stability condition.
Before s is reached, forward selection is quite unstable in this setting, as the non-zero
entries of β have the same magnitude. Therefore, the algorithm is equally likely to pick any
subset of s− 1 non-zero coordinates, and changing the value of one data point can incur a
change of selected variables with non-negligible chance, resulting in instability of the loss
function. When forward selection reaches exactly s steps, it selects the correct subset with
overwhelming probability, leading to a stable loss function. When forward selection selects
one more variable, the index of the additional selected variable is not stable but the fitted
coefficient is very close to zero, so that the fitted loss function is still stable. In contrast,
the lasso algorithm is continuous in the input data, hence the stability is much easier to
hold for all values of penalty parameters, as suggested by the right plot in Figure 2.

The advantage of difference-based model confidence sets. Now we look at the model
confidence set performance as applied to the lasso on data with increasing n. Specifically,
we are studying the size |A| and coverage P(r∗ ∈ A) for

(1) the näıve method A = Â0 as defined in (7), and

(2) the difference based method A = Â as defined in (8).

This simulation setting is again similar with the value of s fixed at 5, but d grows at rate n/10.
This time, to make our grid of regularization parameters, we first find λmax = 1

n∥Z
TY ∥∞,

then the grid is defined by λmax2
i/
√
1− 1/V for i ∈ {0, . . . ,−9}. The re-scaling of
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Figure 2: Coverage of CV risk confidence intervals for forward selection terminated
at different values (left) and lasso at different regularization values (right). The dashed
horizontal line marks the nominal level given by 1− α.

√
1− 1/V is done since the choice of λ in lasso is inversely proportional to the square

root of the training sample size, and λmax may be a bit too small for the reduced sample
size in V -fold cross-validation. The left plot of Figure 3 shows that the difference based
method produces considerably smaller sets while maintaining coverage of at least 0.95,
supporting the intuition that the difference based method is able to take into account the
joint randomness of the cross-validated risks. On the right plot of Figure 3, the empirical
coverage of the näıve method is always overly conservative, while the coverage of the
difference based method does get closer to nominal level for certain values of n. Intuitively,
such a fluctuation of coverage as n varies can be explained by whether the problem is close
to the boundary of the null hypothesis. More specifically, let δr = (R̃r − R̃s : s ≠ r). In the
difference based method, the null hypothesis for a candidate r is that δr is non-positive
in each coordinate, which is a composite null hypothesis. The Gaussian approximation
is derived precisely for the extreme point of the null hypothesis, where all coordinates
of δr are zero. In practice, we will never really be working in this scenario. Therefore,
the supremum-based confidence set will be too conservative if δr has many large negative
coordinates, and will be nearly exact if most of the coordinates are close to 0. In our
simulation, when n increases, the relative performance of different tuning parameters also
changes. Indeed we do observe that when n ≤ 2500, the small sample size cannot quite
distinguish the two best λ values that perform nearly equally well.

5 Stability condition examples

Before moving on to our Gaussian comparison results with deterministic centering, we
pause to provide some context on the aforementioned stability conditions and discuss some
settings wherein they are satisfied. Previously, the first order stability condition and its
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Figure 3: Size and coverage of model confidence set procedures with α = 0.05.

use in proving risk consistency of cross-validation were studied in Bousquet and Elisseeff
(2002). In the study of low-dimensional CLTs for cross-validation, Austern and Zhou (2020)
studied both first and second order stability conditions for parameters estimated as global
minimums of convex optimization problems. In this section, we combine and extend these
two lines of results. First, we prove the first and second order stability for stochastic
gradient descent applied to convex and smooth objective functions. This result provides a
more concrete example of stability by taking into consideration the particular optimization
algorithm and its optimization error. We also believe our result has the correct technical
conditions on the objective function for the second order, which is missing in Austern and
Zhou (2020). Second, we provide an example in which the first and second order stability
conditions hold for the difference loss function. This is a much more subtle task since the
differences in loss functions often have vanishing variances.

5.1 Stability of stochastic gradient descent

Stochastic gradient descent (SGD) is one of the most popular optimization algorithms in
large-scale machine learning. Thus stability of SGD is particularly important in our analysis
of cross-validation. First order stability bounds for SGD were established in Hardt et al.
(2016) under convexity and smoothness assumptions, similar to those presented here and in
Austern and Zhou (2020). Here, we will provide first and second order stability bounds for
SGD.

Suppose the loss function ℓ : X → R is written as ℓ(x) = ℓ(x; θ) and parameterized by
θ ∈ Θ. A classical approach for estimating θ is to use an M-estimator,

θ̂ = argmin
θ∈Θ′⊂Θ

n∑
i=1

ψ(θ;Xi), (9)

where ψ : Θ → R is an objective function, which may or may not be the same as ℓ. A
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popular way to solve (9) is to use SGD, whereby we initialize θ̂0 = 0 and then iteratively
update

θ̂t+1 = θ̂t − αt+1ψ̇(θ̂t;Xt+1) (10)

for t = 1, . . . , n− 1 with step size αt ≥ 0, where ψ̇(θ;x) and ψ̈(θ;x) are the first and second
partial derivatives of the objective function ψ(·, ·) with respect to θ, respectively. Upon
reaching t = n− 1, we set θ̂ = θ̂n which serves as our SGD estimator.

In order to obtain a first order stability bound for SGD, we consider the following smoothness
and convexity assumptions of the objective function.

Assumption 3 (Smoothness and convexity of the objective function). For all x,

(a) ψ(·;x) is γ-strongly convex and L-Lipschitz

(b) ψ̇(·;x) is β-Lipschitz

These assumptions are standard in the learning-theoretic literature, and have been considered
in Hardt et al. (2016) to establish a similar first order stability result.

We now present our first order stability bound for SGD.

Proposition 5.1 (First order stability of SGD). Under Assumption 3, if αt = t−aβ−1 for

some a ∈ (0, 1) and γ
β ≥ a(1−a)

1−2−(1−a)
logn
n1−a , then∥∥∥∇iθ̂n

∥∥∥ ≤ 2L

β
n−a

This proposition differs from the results in Hardt et al. (2016) by considering a different
decay speed of the step size. Also, Austern and Zhou (2020) used the same assumptions
to establish the first order stability for the global optimum of M-estimators, but did not
consider any optimization errors.

Before moving on to second order stability, we provide an example in which Assumption 3
is satisfied.

Example 3. Consider ridge regression: x = (y, z) ∈ B(Rx), and θ ∈ B(Rθ), where B(R)
denotes a centered Euclidean ball with radius R. Consider objective function

ψ(θ;x) =
1

2
(y − zT θ)2 +

1

2
λ∥θ∥2 .

Then ψ is γ-strongly convex with γ = λ, L-Lipschitz with L = R2
x(1 + Rθ) + λRθ, and

β-smooth with β = R2
x + λ.

The additional condition γ/β ≫ logn
n1−a can still hold if Rx, Rθ, and λ−1 vary as small

polynomials of n.
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Next, in order to provide a bound on the second order stability, we need to control the
“difference in difference” of the loss functions, which inevitably involves the second order
Taylor expansion and would require regularity of the Hessian of ψ.

Assumption 4 (Lipschitz Hessian). For all x, ψ̈(·;x) is L2-Lipschitz.

To the best of our knowledge, Assumption 4 has not appeared in the literature of stability of
M-estimators. It is required to establish second order stability and we believe this condition
is also needed for the second order stability proof in Austern and Zhou (2020).

Now we are ready to present our second order stability result for SGD.

Proposition 5.2 (Second order stability of SGD). Under Assumption 4 and the same
conditions as Proposition 5.1,∥∥∥∇j∇iθ̂n

∥∥∥ ≤ c(L,L2, a, γ, β)n
−2a log n .

The constant c(L,La, a, γ, β) is explicitly tracked in the proof. The rate of n−2a is expected,
while the additional log n factor arises in the proof when using a union bound on exponential
tails.

For ridge regression, the additional requirement of Assumption 4 is trivial, as ψ̈(·;x) is
constant. Here we consider a less trivial example.

Example 4. Consider logistic ridge regression: x = (y, z) ∈ B(Rx), and θ ∈ B(Rθ).

ψ(θ; z) = −yzT θ + log(1 + ez
T θ) + λ∥θ∥2 .

Then ψ is γ-strongly convex with γ = 2λ. ψ is L-Lipschitz with L = R2
x+

1
Rθ

log(1+eRxRθ)+

λRθ, and β-smooth with β = Rx
Rθ

+ λ. ψ̈(θ) is L2-Lipschitz with L2 =
R2

x
4Rθ

.

The required o(n−3/2) rate can be achieved when a > 3/4 and Rx, Rθ, λ
−1 grow slowly

enough as n increases.

From parameter stability to loss stability. The first and second order stability
for SGD established in Propositions 5.1 and 5.2 are for the estimated parameter θ. The
corresponding stability conditions for the loss function ℓ(x; θ) can be derived under suitable
smoothness conditions on ℓ. In particular, if we assume that for each x, both ℓ(x; θ) and
ℓ̇(x; θ) are Lipschitz, then, using a standard first order Taylor expansion of ℓ(x; θ) with
respect to θ, we have∣∣∣∇iℓ(x; θ̂n)

∣∣∣ ≤ C1

∥∥∥∇iθ̂n

∥∥∥ , ∣∣∣∇j∇iℓ(x; θ̂n)
∣∣∣ ≤ C2

(∥∥∥∇j∇iθ̂n

∥∥∥+ sup
i

∥∥∥∇iθ̂n

∥∥∥2) ,
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where C1 is a constant depends on the Lipschitz constant of ℓ(x; ·), and C2 is a constant
depends on the Lipschitz constants of ℓ(x; ·) and ℓ̇(x; ·). As a result, when a is large enough
and the Lipschitz constants in ψ(x; ·), ℓ(x; ·) and their derivatives do not grow too fast, the
first and second order loss stability conditions can be satisfied.

5.2 Stability of difference loss: a nonparametric regression example

Establishing the stability conditions for difference losses as required in Proposition 4.2 is more
delicate, mainly because Assumption 2(c) will be violated. For the Gaussian comparison
argument to work, one needs to re-standardize the loss functions by considering

∇i(ℓr − ℓs)√
Var(ℓr − ℓs)

and
∇j∇i(ℓr − ℓs)√
Var(ℓr − ℓs)

in Assumption 2(a) and 2(b), respectively. In general, the variance of ℓr − ℓs depends on
the bias-variance decomposition of the two models, which may cancel with each other at
different rates. A general treatment of such a variance of difference loss functions seems to
be a challenging task, if at all possible, and we will not pursue this in the current paper.
Instead, we use a simple non-parametric example to explicitly quantify the variance and
stability of difference loss functions.

In particular, consider the following linear regression model with an infinite dimensional
feature vector. Let (Xi : 1 ≤ i ≤ n) be iid vectors with Xi = (Yi, Zi) ∈ R1 × R∞, such
that

Yi =

∞∑
j=1

βjZij + ϵi (11)

where

1. ϵi is independent of Zi, has mean zero, finite variance σ2ϵ , and is 1-SW;

2. Zij is mean zero, has unit variance, is 1-SW, and satisfies E(Zij |Zi1, ..., Zi,j−1) = 0
for all j;

3. βj ≍ j−
1+a
2 for some a > 0 for all j .

The zero mean and unit variance will simplify the estimator. The sub-Weibull conditions
will be carried over to the difference of the loss functions. The rate of βj allows us to track
the bias and variance precisely.

For each j, we can naturally estimate βj by

β̂j =
1

n

n∑
i=1

YiZij .
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For each candidate model r, let Jr = Jr,n be a positive integer such that Jn,r → ∞ at
a speed that is specified by the model r. For example Jr,n = nαr , where {αr : r ∈ M}
is a collection of positive numbers corresponding to different increase speed of Jr,n. The
estimates we consider are truncated sequence estimates defined by integers Jr,

f̂r(Z0) =

Jr∑
j=1

β̂jZ0j , ∀ r ∈ M .

Proposition 5.3 (Loss difference stability in the nonparametric regression example). Under
the regression model (11) and the conditions for ϵ, Z, β, if Jr ≤ cJs for some constant
c ∈ (0, 1), then

(a) the first order stability required in Proposition 4.2 holds when JsJ
a/2
r = o(n);

(b) the second order stability required in Proposition 4.2 holds when JsJ
a/2
r = o(

√
n).

Remark 5. Under the specified decay speed βj ≍ j−1−a, the optimal truncation J∗ that

minimizes the risk under the squared prediction loss is J∗ ≍ n
1

1+a . If Js ≫ Jr ≍ J∗, the the

condition JsJ
a/2
r = o(

√
n) cannot be satisfied. This implies the stability condition is harder

to satisfy if the estimate from model s has large variance. On the other hand, if J∗ ≍ Js,

then the condition JsJ
a/2
r = o(

√
n) can be satisfied when a > 1 and Jr ≲ n(a−1)/(a+a2).

Again, this agrees with the intuition that cross-validation is able to screen out inferior
models that have large bias Yang (2007).

6 On deterministic centering

So far, we have focused on the high dimensional Gaussian comparison of cross-validated
risk with random centering, where the mean vector R̃ is data-dependent. This leads to
the following question: can we establish Gaussian comparison results with fixed centering?
It is natural to expect the fixed centering to be R∗ = E(R̂cv). Also, the corresponding
scaling should be based on the total variance E

[
ℓ(X0;X−1)ℓ(X0;X−1)

T
]
−R∗R∗T , which

in addition to the variance term Σ considered in the random centering case above, must
also take into account the variability caused by the randomness of R(X−1). Such a fixed
centering central limit theorem for cross-validated risks has been studied in Austern and
Zhou (2020) in the low-dimensional case. Our development here extends their result to the
high-dimensional case with a more streamlined proof.

6.1 Risk stability

In order to study the randomness in the risk function Rr(X−1), we need the following
stability conditions on the risk functions.
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Assumption 5 (Risk stability). There exists a constant ϵR ∈ R+ such that n∇iRr(X−1)
is ϵR-SW for all i.

A remarkable difference between the risk stability and loss stability is in the scaling factors.
For the first order differencing operators ∇i, the scaling factor of n instead of

√
n makes

the risk stability apparently harder to control than the loss stability. This is also considered
and briefly discussed in Austern and Zhou (2020) in the low-dimensional case. Here, we
give a detailed explanation of this key condition. At first, it seems unreasonable to assume
that ϵR is very small, as ∇iRr(X−1) generally should not be smaller than 1/n. However, a
closer inspection suggests that the risk function (taking expectation of the loss function
ℓr(X0,X−1) over the evaluating point X0) is usually much more stable than the loss function
itself, as taking a conditional expectation usually increases stability. In fact, such an increase
of stability can be quite substantial. For example, assume that the loss function takes a
parametric form: ℓ(x0;x1, ..., xñ) = ℓ(x0; θ̂) where θ̂ = θ̂(x1, ..., xñ) is a fitted parameter
from the input data (x1, ..., xñ). Then

∇iR(θ̂) ≈
(
dR

dθ

∣∣∣∣
θ̂

)
∇iθ̂ ,

which should be much smaller than ∇iθ̂ if R(θ) := Eℓ(X0; θ) is flat at θ̂. This is usually the
case when θ̂ is in a small neighborhood of the optimal parameter value with minimum risk
θ∗.

Furthermore, we remark that our theoretical development does not require ϵR to vanish
asymptotically. Instead, we only need ϵR to be dominated by other vanishing terms such as
ϵℓ and 1/

√
n.

6.2 Gaussian comparison with deterministic centering

Finding the covariance matrix for deterministic centering starts by identifying the contribu-
tion of randomness from each single sample point. We start by writing

nR̂cv,r =
n∑
i=1

ℓr(Xi;X−vi) .

The part in the above sum that involves Xi is

ℓr(Xi;X−vi) +
∑
j /∈Ivi

ℓr(Xj ;X−vj ) . (12)

It is clear thatXi plays two different roles in R̂cv,r: (i) as the evaluation point in ℓr(Xi;X−vi),
(ii) as one of the ñ fitting sample points in each of ℓr(Xj ;X−vj ) for j ̸= Ivi . The randomness
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contributed by Xi as an evaluating point should be captured by the variability of the
average loss function

ℓ̄r(X1) = E [ℓr(X1;X−1)|X1] ,

and the randomness contributed by X1 as a fitting sample point should be captured in the
function

R̄r(X1) = E [R(X−V )|X1] .

Therefore, let Φ = (ϕrs : 1 ≤ r, s ≤ p) be the covariance matrix given by

ϕrs :=Cov
[
ℓ̄r(X1) + ñR̄r(X1) , ℓ̄s(X1) + ñR̄s(X1)

]
1 ≤ r, s ≤ p . (13)

We assume that the marginal variance terms are bounded and bounded away from 0, leading
to the following assumption which is analogous to Assumption 1(b).

Assumption 6. There exist positive constants ϕ and ϕ̄ such that ϕ ≤ ϕrr ≤ ϕ̄ for each
r ∈ [p].

Using this assumption on the marginal variance terms, the symmetry and moment condition
on ℓr, and all previous stability assumptions on ℓr and Rr, we state the following result for
the Gaussian comparison with fixed centering.

Theorem 6.1 (Deterministic Gaussian Comparison). Assume Assumptions 1, 2, 5 and 6
hold, then we have

sup
z∈R

∣∣∣P(√nmax(R̂cv −R∗) ≤ z
)
− P (maxY ≤ z)

∣∣∣
≤ Õ

(
[ϵℓ(1 + ϵR)]

1/3 + n−1/8(1 + ϵR)
3/4
)

for Y ∼ N(0,Φ).

Remark 6. Similar to Remark 3, the constants ϕ̄ and ϕ appear in the error bound as a

multiplicative factor in the Õ(·) notation, which is no larger than ϕ̄ϕ−2.

6.3 Deterministic variance estimation

Finally, we address the problem of estimating ϕrs, which has also been considered in Austern
and Zhou (2020). We believe the estimate stated in their text is off by a factor of 2, and
also only covers the case of two-fold cross-validation. Our result below corrects the scaling
and covers the general V -fold case in a multivariate setting.

As suggested in (13) and Theorem 6.1, the covariance ϕrs is essentially the sum of the
marginal variability of each Xi. Indeed, we have the following result
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Theorem 6.2 (Marginal variance approximation). Under Assumptions 1, 2, 5 and 6, we
conclude that

n2

2
E
[
∇iR̂cv,r∇iR̂cv,s|X−vi

]
− ϕrs

is ϵℓ(1 + ϵR)-SW.

Theorem 6.2 implies that we can simply estimate E[∇1R̂cv,r∇1R̂cv,s|Xv1 ] to approximate
ϕrs. This leads to the following procedure, which requires a hold-out set of iid sample
points X ′

1, ..., X
′
m from the same distribution, that are not involved in any cross-validation

folds. In practice, one can choose a small but diverging value of m = na with a ∈ (0, 1),
then use n−m sample points for the V -fold cross-validation and m hold-out sample points
for variance estimation.

For i ∈ [n] and j ∈ [m], define R̂i,j
cv to be the cross-validation risk vector obtained by

replacing Xi with X
′
j . Then Theorem 6.2 implies the following.

Corollary 6.3. Define

ϕ̂rs =
n2

m

m/2∑
j=1

(
R̂1,2j−1

cv,r − R̂1,2j
cv,r

)(
R̂1,2j−1

cv,s − R̂2j
cv,s

)
. (14)

Then with probability at least 1−O((n+ p)−1) we have

sup
r,s

|ϕ̂rs − ϕrs| ≤ Õ
(
ϵℓ(1 + ϵR) +m−1/2

)
.

The estimator in (14) estimates E[∇1R̂cv,r∇1R̂cv,s|X−v1 ] by taking empirical average over
m/2 conditional iid samples given the fitting data X−v1 , which is supported by Lemma D.1
and Lemma D.2. In practice, we can possibly also use

ϕ̂rs =
n2

2m

m∑
j=1

(
R̂cv,r − R̂

ij ,j
cv,r

)(
R̂cv,s − R̂

ij ,j
cv,s

)
.

which perturbs different entries instead of just the first one.

Corollary 6.3 provides an entry-wise error bound of the covariance estimation, which is good
enough for Gaussian approximation of the supremum, as demonstrated in Corollary 4.1.
The same kind of inference procedures considered in Section 4 can be carried over to the
deterministic centering case, which is omitted here as there is little additional insight.
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7 Discussion

Since its first appearance, high-dimensional Gaussian comparisons have found wide ap-
plications in statistical inference problems, and have been extended and improved by
many authors. In addition to the extensions to dependent data mentioned above, sharper
results on the Gaussian comparison of independent sums have been obtained in recent
literature. For example, see Deng and Zhang (2020); Kuchibhotla et al. (2021); Lopes
(2020); Kuchibhotla and Rinaldo (2020). In our work, the goal is to develop an asymptotic
Gaussian comparison to serve the purpose of statistical inference. Thus we did not attempt
to obtain the optimal Berry-Esseen type of convergence rates. Our proof uses the Slepian
interpolation as in the original work Chernozhukov et al. (2013), and it seems possible to
obtain better rates of convergence if more refined techniques are used.

Our main motivations are to understand the joint randomness of many cross-validated risks,
and to provide theoretical foundations for uncertainty quantification of cross-validation
based model selection. The theory included in this work is particularly relevant to the
“cross-validation with confidence” method (Lei, 2020), where one uses the asymptotic
Gaussian comparison to construct a confidence set that contains the best model with a
prescribed confidence level. This method is connected to the model selection confidence set
literature (Hansen et al., 2011), which has largely relied on sequential hypothesis testing
based approaches (Gunes and Bondell, 2012; Ferrari and Yang, 2015; Jiang et al., 2008). We
expect the theory outlined in this paper to be useful in developing a new model confidence set
estimator using cross-validation with both provable validity guarantees and good practical
performance.

A More notation, definition, and basic properties

A.1 Definition and properties of sub-Weibull concentration

Definition 2 (sub-Weibull). Let K,α be positive numbers. We say a random variable X is
(K,α)-sub-Weibull (or (K,α)-SW) if any of the following holds:

1. There exists constant a such that P
(
|X|
K ≥ t

)
≤ ae−t

α
, for all t > 0.

2. There exists constant c such that ∥X∥q ≤ cKq1/α for all q ≥ 1.

The equivalence of these two definitions can be found in, for example, Theorem 2.1 of
Vladimirova et al. (2020). The constants a, c in the definition above are not important, and
are used here so that the two definitions have the same (K,α) pair.

Proposition A.1 (Basic properties of sub-Weibull random variables). If Xi is (Ki, αi)-SW,
for i = 1, 2, then
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1. X1X2 is (K1K2,
α1α2
α1+α2

)-SW.

2. X1 +X2 is (K1 ∨K2, α1 ∧ α2)-SW.

The following theorem controls the tail integral of sub-Weibull random variables.

Lemma A.2. If Y is (K,α)-sub-Weibull, then there exists constant c > 0 independent of
K such that E[|Y |1(|Y | ≥ wK)] ≤ cKw exp(−wα) for any w ≥ 1.

Proof of Lemma A.2. Without loss of generality, assume Y ≥ 0 and K = 1. Let f(y) be
the density function of Y .

E[Y 1(Y ≥ w)] =

∫ ∞

y=w
yf(y)dy

=

∫ ∞

y=w

∫ y

u=0
duf(y)dy

=

∫ w

u=0

∫ ∞

y=w
f(y)dydu+

∫ ∞

u=w

∫ ∞

y=u
f(y)dydu

=wP(Y ≥ w) +

∫ ∞

u=w
P(Y ≥ u)du

≤wa exp(−wα) +
∫ ∞

u=w
a exp(−uα)du

=wa exp(−wα) + a

α

∫ ∞

v=wα

exp(−v)v
1
α
−1dv .

When α ∈ (0, 1], since w ≥ 1 we have, by (Gabcke, 1979, Proposition 4.4.3)∫ ∞

v=wα

exp(−v)v
1
α
−1dv ≤ 1

α
e−w

α
w1−1/α .

Thus, E[Y 1(Y ≥ w)] ≤ a(1 + α−2)w exp(−wα).

When α > 1, v1/α−1 ≤ 1 on [w,∞) since w ≥ 1, so we have∫ ∞

v=wα

exp(−v)v
1
α
−1dv ≤ exp(−wα) .

So E[Y 1(Y ≥ w)] ≤ 2aw exp(−wα) .

The following lemma is a sub-Weibull version of martingale concentration inequality, showing
that the scaling of a martingale with stationary sub-Weibull increments scales at the speed
of

√
n, where n is the time horizon.

Lemma A.3. Let M =
∑n

i=1Mi where the sequence (Mi)
n
i=1 satisfies
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1. martingale property: E(Mi|Mj : 1 ≤ j < i) = 0 for all 2 ≤ i ≤ n, and EM1 = 0.

2. sub-Weibull tail: ∥Mi∥q ≤ cKiq
1/αi for some c, αi > 0 and all q ≥ 1.

Then we have, for α′ = 2α∗

2+α∗ with α∗ = minj≤n αj and a positive constant c′,

∥M∥q ≤ c′

(
n∑
i=1

K2
i

)1/2

q1/α
′
, ∀q ≥ 1 .

If Ki = K for all i ∈ [n], then

∥M∥q ≤ c′
√
nKq1/α

′
, ∀q ≥ 1 .

Proof of Lemma A.3. By Theorem 2.1 of Rio (2009), we have for any q ≥ 2

∥M∥q ≤

[
(q − 1)

n∑
i=1

∥Mi∥2q

]1/2
≤

[
C(q − 1)q2/α

∗
n∑
i=1

K2
i

]1/2
≤ C1/2q

2+α∗
2α∗

(
n∑
i=1

K2
i

)1/2

.

where C is a constant depending only on c, and the second inequality follows from the
assumption ∥Mi∥q ≤ cKiq

1/αi .

B Proof for random centering

B.1 Notation

We first collect some notation for the proof. For the ease of presentation, we use W =
(Wr : 1 ≤ r ≤ p) to denote the centered and scaled random vector for which we would like
to establish a normal approximation. Thus, in the proof that follows, the symbol Wr may
refer to different objects than in other proofs in this work. In particular, for the random
centering/scaling case (Theorem 3.1), Wr =

√
n(R̂cv,r − R̃r), while in the deterministic

centering/scaling case (Theorem 6.1), Wr =
√
n(R̂cv,r −R∗

r).

Recall the following notation:

• X−v: the ñ (= n(1− 1/V )) subvector of X excluding those in index Iv.

• X−i: the (n− 1) subvector of X excluding the ith entry.

• Xi: the iid vector of X with ith entry being X ′
i, an iid copy of Xi.

For random objects (U, V ) and function f acting on (U, V ), we will also use the notation
EUf(U, V ) = E[f(U, V )|V ]. For example EXif(X) = E[f(X)|X−i].
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B.2 Proof of Theorem 3.1

Proof of Theorem 3.1. Recall the notation:

Wr =
√
n(R̂cv,r − R̃r) =

n∑
i=1

1√
n
Kr,i .

Consider the leave-one-out version of Wr:

W i
r =

∑
j ̸=i

Kj(X
i)/

√
n =Wr −

1√
n
Kr,i −

1√
n
Dr,i .

The plan is to use Slepian’s interpolation which smoothly bridges between W and the
corresponding Gaussian vector Y. In order to do so, we consider an intermediate object

Ŷ =
1√
n

n∑
i=1

Ŷi :=
1√
n

n∑
i=1

Σ1/2
vi εi

with εi
iid∼ N(0, Ip), Σv = [σrs,v]1≤r,s≤p being the conditional covariance matrix ofK(X0;X−v)

given the fitting data X−v, and vi the fold identifier of the sample point indexed by i.

Define the interpolating vector, for t ∈ (0, 1)

Zr(t) =
√
tWr +

√
1− t

∑
i

Ŷr,i/
√
n ,

and the corresponding leave-one-out version

Zir(t) =
√
tW i

r +
√
1− t

∑
j ̸=i

Ŷr,i/
√
n

which satsifies
Zr(t)− Zir(t) = Zr,i(t) +Di(t)

with

Zr,i(t) =
√
tKi/

√
n+

√
1− tŶr,i/

√
n ,

Dr,i(t) =
√
tDr,i/

√
n .

Let h : Rp 7→ R be such that for all z ∈ R. Define

p∑
r,s=1

|∂r∂sh(z)| =M2(h) , (15)
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p∑
r,s,u=1

|∂r∂s∂uh(z)| =M3(h) . (16)

Because E[h(W)−h(Ŷ)] = E
∫ 1
0
dh(Z(t))

dt dt, the main step in the proof is to control Edh(Z(t))
dt .

By Taylor expansion:

E
dh(Z(t))

dt
=

p∑
r=1

n∑
i=1

E[∂rh(Zi(t))Z ′
r,i(t)]

+

p∑
s=1

p∑
r=1

n∑
i=1

E[∂s∂rh(Zi(t)) (Zs,i(t) +Ds,i(t))Z
′
r,i(t)]

+

p∑
u=1

p∑
s=1

p∑
r=1

n∑
i=1

E
{
[Zs,i(t) +Ds,i(t)][Zu,i(t) +Du,i(t)]

×
[∫ 1

0
(1− v)∂u∂s∂rh(Z

i(t) + vZi(t))dv

]
Z ′
r,i(t)

}
. (17)

The first term in (17)

E[∂rh(Zi(t))Z ′
r,i(t)] = EEXi,εi [∂rh(Z

i(t))Z ′
r,i(t)] = E

{
∂rh(Z

i(t))EXi,εi [Z
′
r,i(t)]

}
= 0 .

The second term in (17) consists of two parts. First,

E[∂s∂rh(Zi(t))Zs,i(t)Z ′
r,i(t)]

=(2n)−1E∂s∂rh(Zi(t))

[
(
√
tKs,i +

√
1− tŶs,i)

(
Kr,i√
t
− Ŷr,i√

1− t

)]

=(2n)−1E

{
∂s∂rh(Z

i(t))EXi,εi

[
(
√
tKs,i +

√
1− tŶs,i)

(
Kr,i√
t
− Ŷr,i√

1− t

)]}
=0 ,

by construction of Ŷi. Now the second term in (17) reduces to∑
s,r

∑
i

E[∂s∂rh(Zi(t))Ds,i(t)Z
′
r,i(t)] .

By Lemma B.2, Ds,i is ϵℓ-SW. In Z ′
r,i(t) = (Kr,i/

√
t− Ŷr,i/

√
1− t)/(2

√
n), Kr,i is 1-SW by

Assumption 2, and Ŷr,i
d
= σrr,viεr,i is also 1-sub-Weibull as σr,vi is 1-sub-Weibull according

to the proof of Lemma B.3. Therefore, Ds,i(t)Z
′
r,i(t) is n

−1ϵℓηt-SW, where

ηt = t−1/2 ∨ (1− t)−1/2 . (18)
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Now for any τ > 0, by Lemma A.2∑
s,r

∑
i

E[∂s∂rh(Zi(t))Ds,i(t)Z
′
r,i(t)] (19)

=
∑
s,r

∑
i

E[∂s∂rh(Zi(t))Ds,i(t)Z
′
r,i(t)1(|Ds,i(t)Z

′
r,i(t)| ≤ n−1τϵℓηt)]

+
∑
s,r

∑
i

E[∂s∂rh(Zi(t))Ds,i(t)Z
′
r,i(t)1(|Ds,i(t)Z

′
r,i(t)| > n−1τϵℓηt)]

≤n−1τϵℓηt
∑
s,r

∑
i

E|∂s∂rh(Zi(t))|

+M2

∑
s,r

∑
i

E[|Ds,i(t)Z
′
r,i(t)|1(|Ds,i(t)Z

′
r,i(t)| > n−1τϵℓηt)]

≲τϵℓηtM2 + np2e−τ
c
.

By choosing τ = c1 log
c2(n+ p) with appropriate choices of constants c1, c2 independent of

(n, p), (19) is bounded by Õ(M2ϵℓηt).

The third term in (17) is similarly controlled: let

Qrsu,i =

∫ 1

0
(1− v)∂u∂s∂rh(Z

i(t) + vZi(t))dv

and
Trsu,i = [Zs,i(t) +Ds,i(t)][Zu,i(t) +Du,i(t)]Z

′
r,i(t) .

By definition of M3 we have ∑
r,s,u

|Qrsu,i| ≤M3

and Trsu,i is n
−3/2ηt-SW. Thus the third term is controlled by

Õ(n−1/2M3ηt) .

Since ηt is integrable on (0, 1), we have shown that

|Eh(W)− Eh(Ŷ)| ≤ Õ(ϵℓM2 + n−1/2M3) .

Combining Lemma B.4 and the anti-concentration result1 (Chernozhukov et al., 2013,
Lemma 2.1), we have for any 0 < β < n

sup
z

∣∣∣P(max
r
Wr ≤ z

)
− P(max

r
Ŷr ≤ z)

∣∣∣ ≤Õ (ϵℓβ2 + n−1/2β3 + β−1
)

1The anti-concentration result there is for Gaussian processes. However, our Ŷ is a Gaussian mixture
because Ŷ is Gaussian only when conditioning on X. We can condition on X, provided that supr,v σrr,v ≤
Õ(1) with high probability. This can be established if σrr,v is 1-SW, which is implied by the proof of
Lemma B.3.
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≤Õ
(
ϵ
1/3
ℓ ∨ n−1/8

)
. (20)

where the last inequality follows by choosing β = min(ϵ
−1/3
ℓ , n1/8).

To get the final approximation, let

∆ = max
r,s,v

|σrs,v − σrs| , (21)

and event
E = {∆ ≤ c1ϵℓ log

c2(n+ p)} , (22)

with appropriately chosen constants c1, c2 such that, according to Lemma B.3,

P(E) ≥ 1− n−1 .

Then

P
(
max
r
Ŷr ≤ z

)
≤P
(
max
r
Ŷr ≤ z|E

)
+ P (Ec)

≤P
(
max
r
Yr ≤ z

)
+ Õ(ϵ

1/3
ℓ log1/3(ϵ−1

ℓ )) + n−1 , (23)

where the last inequality uses Theorem 2 of Chernozhukov et al. (2015) between Ŷ and Y.
On the other hand we have

P
(
max
r
Ŷr ≤ z

)
≥P
(
max
r
Ŷr ≤ z|E

)
P(E)

≥
[
P
(
max
r
Yr ≤ Z

)
− Õ(ϵ

1/3
ℓ log1/3(ϵ−1

ℓ ))
]
(1− n−1) (24)

≥P
(
max
r
Yr ≤ Z

)
− Õ(ϵ

1/3
ℓ log1/3(ϵ−1

ℓ )) . (25)

The claimed result follows by combining (20), (23), and (25).

B.3 Proof of Corollary 4.1

Proof of Corollary 4.1. First, define event E1 on the space of X n as the subset consisting
all samples of size n such that

sup
v

∥Σ̂v − Σ∥∞ ≲ Õ
(

1√
n
+ ϵℓ

)
,

where the constants c1, c2 in the Õ notation is omitted. Then combining Lemma B.3 and
standard sub-Weibull concentration of iid sums we have

P(E1) ≥ 1− n−1
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with appropriate choice of universal constants in Õ(·). Here the n−1/2 term comes from
∥Σ̂v − Σv∥∞ and the ϵℓ term comes from ∥Σv − Σ∥∞.

Let

δ0 =
∥∥∥√nΛ̂−1/2(R̂cv − R̃)

∥∥∥
∞
,

δ1 =
∥∥∥√nΛ−1/2(R̂cv − R̃)

∥∥∥
∞
,

δ2 =∥Y∥∞ , Y ∼ N(0,Λ−1/2ΣΛ−1/2) ,

δ3 =∥Ỹ∥∞ , Ỹ ∼ N(0, Λ̂−1/2Σ̂Λ̂−1/2) .

On E1 we have
|δ0 − δ1| ≤ Õ(n−1/2 + ϵℓ) .

Define E2 be the event that
∥∥∥√n(R̂cv − R̃)

∥∥∥ ≤ 2
√
log(n+ p). Then Theorem 3.1 implies

that
P(E2) ≥ 1− n−1 − Õ(n−1/8 + ϵ

1/3
ℓ ) .

Then we have the following approximation.

P(δ0 ≤ t) ≤P(δ0 ≤ t , E1 ∩ E2) + P(Ec1) + P(Ec2)

≤P(δ1 ≤ t+ |δ1 − δ0| , E1 ∩ E2) + Õ(n−1/8 + ϵ
1/3
ℓ )

≤P
[
δ1 ≤ t+ Õ(n−1/2 + ϵℓ)

]
+ Õ(n−1/8 + ϵ

1/3
ℓ )

≤P
[
δ2 ≤ t+ Õ(n−1/2 + ϵℓ)

]
+ Õ(n−1/8 + ϵ

1/3
ℓ )

≤P
[
δ3 ≤ t+ Õ(n−1/2 + ϵℓ)

∣∣E]+ Õ(n−1/8 + ϵ
1/3
ℓ )

≤P [δ3 ≤ t] + Õ(n−1/8 + ϵ
1/3
ℓ ) ,

where the third inequality holds because on E1 |δ1−δ0| ≤ Õ(n−1/2+ϵℓ); the fourth inequality

holds by applying Theorem 3.1 to the scaled loss functions ℓr/σ
1/2
rr ; the fifth inequality

holds because when conditioning on the event E , the two Gaussian vectors have covariance
matrices differing by at most Õ(n−1/2 + ϵℓ) and applying Theorem 2 of Chernozhukov et al.
(2015); the last inequality holds by anti-concentration of Gaussian maxima (Chernozhukov
et al., 2013, Lemma 2.1).

The corresponding lower probability bound of P(δ0 ≤ t) can be obtained similarly.
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B.4 Auxiliary lemmas

Lemma B.1 (Properties of the difference operator). Let f , g be two functions of the vector
(X1, ..., Xn, X

′
1, ..., X

′
n) such that for some j ∈ [n], EXjg = 0 and f is independent of X ′

j,
then

E[fg] = E[(∇jf)g] .

Proof of Lemma B.1. Let f j be the iid version of f with input Xj replaced by X ′
j . Now It

suffices to show that E[gf j ] = 0, which holds true since E[gf j ] = E[f j(EXjg)] = 0.

Lemma B.2. Under Assumption 2, for all i ∈ [n], r ∈ [p], Dr,i is ϵℓ-SW.

Proof of Lemma B.2. Let Fk,i be the sigma field generated by Fk and X ′
i for k ∈ [n], and

F0,i be the sigma field genreated by X ′
i. Because E(∇iKj |X ′

i) = 0 for all j ̸= Ivi , we have
the following martingale sum representation

Dr,i =
n∑
k=1

E(Dr,i|Fk,i)− E(Dr,i|Fk−1,i) =
n∑
k=1

E(∇̃kDr,i|Fk,i) ,

where ∇̃k is the same operator as ∇k except that it replaces Xk by X ′′
k , a further iid copy.

This is to make sure that the difference operator ∇̃i does not interfere with X ′
i, which is

already involved in Dr,i.

For each k ∈ [n], if k ∈ {i, j}, we have that ∇̃k∇iKj is (ϵℓn
−1/2, α)-SW by part 1 of

Assumption 2 and closure of sub-Weibull tails under additions.

For each k ∈ [n]\{i, j}, we have that ∇̃k∇iKj is either 0 (if k ∈ Ivj ) or (ϵℓn
−3/2, α)-SW (if

k ̸= i, j, by part 2 of Assumption 2).

So overall, we conclude that ∇̃kDr,i is (ϵℓn
1/2, α)-SW. The claimed result follows from

Lemma A.3.

Lemma B.3. Under Assumption 2, σrs,1 − σrs is ϵℓ-SW.

Proof of Lemma B.3. Without loss of generality, we work with v = 1. First write σrs,1−σrs
as the sum of martingale increments

σrs,1 − σrs =

ñ∑
i=1

E(∇iσrs,1|Fi) . (26)

Next we control each E(∇iσrs,1|Fi). Let ∥ · ∥ be any Lq norm with q ≥ 1,

∥E(∇iσrs,1|Fi)∥ ≤ ∥∇iσrs,1∥
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≤
∥∥E0

(
Kr(X0,X−1)Ks(X0,X−1)−Kr(X0,X

i
−1)Ks(X0,X

i
−1)
)∥∥

≤
∥∥Kr(X0,X−1)Ks(X0,X−1)−Kr(X0,X

i
−1)Ks(X0,X

i
−1)
∥∥

≤∥[∇iK(X0,X−1)]Ks(X0,X−1)∥+
∥∥Kr(X0,X

i
−1) [∇iKs(X0,X−1)]

∥∥ .
Then it follows from Assumption 2 and Proposition A.1 that E(∇iσrs,1|Fi) is ϵℓn−1/2-SW.
Further applying Lemma A.3 to the martingale sum (26) we conclude that σrs,1 − σrs is
ϵℓ-SW.

Lemma B.4 (Bridging between smooth function and CDF of maximum). For any β > 0,
there exists a function h = hβ : Rp 7→ R, such that for any random vector Z ∈ Rp,

P
(
max
r
Zr ≤ t

)
≤ Eh(Z) ≤ P

(
max
r
Zr ≤ t+

log p+ 1

β

)
and, for some universal constant C,

M2(h) = sup
z∈Rp

p∑
r,s=1

|∂r∂sh(z)| ≤ Cβ2 ,

M3(h) = sup
z∈Rp

p∑
r,s,u=1

|∂r∂s∂uh(z)| ≤ Cβ3 .

Proof of Lemma B.4. See Lemma A.5 and Corollary I.1 of Chernozhukov et al. (2013).

C Proofs for stability condition examples

C.1 Proof of Proposition 5.1

Proposition 5.1 is a direct consequence of Lemma C.1.

Lemma C.1 (Strongly convex first order error). For t ≥ i,

∥∇iθ̂t∥ ≤ 2L

β
i−a exp

[
−ca,β,γ((t+ 1)1−a − (i+ 1)1−a)

]
,

where ca,β,γ = 2γ/[(1− a)(β + γ)].

Proof. By construction, for each t ≥ 1, αt satisfies

αt ≤
2

β + γ

and according to Lemma 3.7 of Hardt et al. (2016) then the SGD update at step t satisfies
∥Gψ,αt(θ, x)−Gψ,αt(θ

′, x)∥ ≤ (1− 2βγ
β+γαt)∥θ−θ

′∥ for parameter update function G : Θ → Θ.
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Then for any t ≥ i,

∥∇iθ̂t∥ ≤2L

β
i−a

t∏
k=j+1

(
1− 2βγ

β + γ
αk

)

=
2L

β
i−a exp

(
t∑

k=i+1

log

(
1− 2βγ

β + γ
αk

))

≤2L

β
i−a exp

(
− 2βγ

β + γ

t∑
k=i+1

αk

)

=
2L

β
i−a exp

(
− 2γ

β + γ

t∑
k=i+1

k−a

)

≤2L

β
i−a exp

(
− 2γ

β + γ

∫ t+1

j+1
x−adx

)
=
2L

β
i−a exp

(
− 2γ

(1− a)(β + γ)

(
(t+ 1)1−a − (i+ 1)1−a

))
.

Proof of Proposition 5.1. First we apply Lemma C.1.

When i > n/2, we have ∥∇iθ̂n∥ ≤ 2L
β (n/2)−a.

When i ≤ n/2, we have ∥∇iθ̂n∥ ≲ L
β exp(−ca γβn

1−a) with ca =
1−2−(1−a)

1−a .

So we conclude that

∥∇iθ̂∥ ≲
L

β
n−a

whenever γ
β ≥ a(1−a)

1−2−(1−a)
logn
n(1−a) .

C.2 Proof of Proposition 5.2

Proof. Without loss of generality, we assume that the data points arrive in their natural
indexed order. Let θ̂ = θ̂(X) be the solution using the entire original data sequence and
denote θ̂i = θ̂(Xi) and θ̂ij = θ̂(Xi,j), where Xi,j is the vector obtained by replacing Xj in
Xi with its iid copy X ′

j .

Then ∥∥∥∇i∇j θ̂j

∥∥∥ =
∣∣∣θ̂j − θ̂ij − θ̂jj + θ̂ijj

∣∣∣
=
∥∥θ̂j−1 − αjψ̇(θ̂j−1;Xj)− θ̂ij−1 + αjψ̇(θ̂

i
j−1;Xj)

− θ̂j−1 + αjψ̇(θ̂j−1;X
′
j) + θ̂ij−1 − αjψ̇(θ̂

i
j−1;X

′
j)
∥∥
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=αj

∥∥∥ψ̇(θ̂j−1;Xj)− ψ̇(θ̂ij−1;Xj)− ψ̇(θ̂j−1;X
′
j) + ψ̇(θ̂ij−1;X

′
j)
∥∥∥

≤2βαj∥∇iθ̂j−1∥.

For t > j,

∇i∇j θ̂t =θ̂t − θ̂it − θ̂jt + θ̂ijt

=θ̂t−1 − αtψ̇(θ̂t;Xt)− θ̂it−1 + αtψ̇(θ̂
i
t−1;Xt)

− θ̂jt−1 + αtψ̇(θ̂
j
t−1;Xt) + θ̂ijt−1 − αtψ̇(θ̂

ij
t−1;Xt)

=∇i∇j θ̂t−1 − αt

[
ψ̇(θ̂t−1, Xt)− ψ̇(θ̂it−1, Xt)− ψ̇(θ̂jt−1, Xt) + ψ̇(θ̂ijt−1, Xt)

]
.

Using the mean value theorem, there exist θ̃t−1 ∈ [θ̂t−1, θ̂
i
t−1] and θ̃

′
t−1 ∈ [θ̂jt−1, θ̂

ij
t−1] such

that

ψ̇(θ̂t−1, Xt)− ψ̇(θ̂it−1, Xt)− ψ̇(θ̂jt−1, Xt) + ψ̇(θ̂ijt−1, Xt)

=ψ̈(θ̃t−1, Xt)(θ̂t−1 − θ̂it−1)− ψ̈(θ̃′t−1, Xt)(θ̂
j
t−1 − θ̂ijt−1)

=ψ̈(θ̃t−1, Xt)∇i∇j θ̂t−1 +
[
ψ̈(θ̃t−1, Xt)− ψ̈(θ̃′t−1, Xt)

]
(θ̂jt−1 − θ̂ijt−1)

Plugging this to the RHS of the previous equation, we get

∇i∇j θ̂t =
[
I − αtψ̈(θ̃t−1, Xt)

]
∇i∇j θ̂t−1 + αt

[
ψ̈(θ̃t−1, Xt)− ψ̈(θ̃′t−1, Xt)

]
(θ̂jt−1 − θ̂ijt−1) .

Let ηt = ∥∇i∇j θ̂t∥, we get

ηt ≤ (1− αtγ)ηt−1 + 2L2αt∥θ̃t−1 − θ̃′t−1∥ · ∥(θ̂
j
t−1 − θ̂ijt−1)∥,

where the second term on the RHS uses Lipschitz property of ψ̈ (with Lipschitz constant
L2).

To control θ̃t−1 − θ̃′t−1, we have

∥θ̃t−1 − θ̃′t−1∥ ≤∥θ̂t−1 − θ̂jt−1∥+ ∥θ̂t−1 − θ̂ijt−1∥+ ∥θ̂it−1 − θ̂jt−1∥+ ∥θ̂it−1 − θ̂ijt−1∥

≤4
2L

β
j−a exp

[
−ca,β,γ(t1−a − (j + 1)1−a)

]
+ 2

2L

β
i−a exp

[
−ca,β,γ(t1−a − (i+ 1)1−a)

]
,

by Lemma C.1 directly on θ̂t−1 − θ̂it−1 and θ̂it−1 − θ̂ijt−1, and also both θ̂t−1 − θ̂ijt−1 =

θ̂t−1 − θ̂it−1 + θ̂it−1 − θ̂ijt−1 and θ̂it−1 − θ̂jt−1 = θ̂it−1 − θ̂ijt−1 + θ̂ijt−1 − θ̂jt−1.
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Let (for t ≥ j + 1)

Ri,j,t =
16L2L2

β3
t−ai−a exp

[
−c(t1−a − (i+ 1)1−a)

]
j−a exp

[
−c(t1−a − (j + 1)1−a)

]
+

8L2L2

β3
t−ai−2a exp

[
−2c(t1−a − (i+ 1)1−a)

]
.

Therefore, we establish the recursive inequality,

ηt ≤ (1− αtγ)ηt−1 +Ri,j,t ,

for t ≥ j + 1.

We now seek to upperbound ηt. To do so, let c′ = γ/[(1− a)β] ≤ ca,β,γ . Thus

ηn ≤(1− αnγ)ηn−1 +Ri,j,n

≤(1− αnγ) [(1− αn−1γ)ηn−2 +Ri,j,n−1] +Ri,j,n

≤

 n∏
k=j+1

(1− αjγ)

 ηj + n∑
k=j+1

[
n∏

l=k+1

(1− αlγ)

]
Ri,j,k

≤ exp
[
−c′((n+ 1)1−a − (j + 1)1−a)

]
ηj

+

n∑
k=j+1

exp
[
−c′((n+ 1)1−a − (k + 1)1−a)

]
Ri,j,k .

(27)

The final line appeals to the fact that for positive integers j < t,
∏t
j+1(1 − αjγ) ≤

exp
[
− γ

(1−a)β
(
(t+ 1)1−a − (j + 1)1−a

)]
.

There are two terms in Ri,j,k, the contribution from the first term in the sum term of (27) is

16L2L2

β3
i−aj−a

n∑
k=j+1

k−a exp
[
−c′((n+ 1)1−a − (k + 1)1−a)

]
× exp

[
−c′(k1−a − (j + 1)1−a)

]
exp

[
−c′(k1−a − (i+ 1)1−a)

]
≤16L2L2

β3
i−aj−a exp

[
−c′((n+ 1)1−a − (i+ 1)1−a)

]
× exp

[
2c′(21−a − 1)

] n∑
k=j+1

k−a

≤16L2L2e
2

β3
i−aj−a exp

[
−c′((n+ 1)1−a − (i+ 1)1−a)

] n∑
k=j+1

k−a
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≤16L2L2e
2

(1− a)β3
i−aj−a exp

[
−c′((n+ 1)1−a − (i+ 1)1−a)

]
(n1−a − j1−a)

the first inequalty uses the facts that k ≥ j + 1 and that exp(c′(k + 1)1−a − c′k1−a) ≤
exp((21−a − 1)c′) since k ≥ 1 and 1− a ∈ (0, 1).

Let c2 be a constant depending only on a. When i ≤ n− c2n
a log n, we have

(n+ 1)1−a − (i+ 1)1−a =(n+ 1)1−a

[
1−

(
1− n− i

n+ 1

)1−a
]

≥(n+ 1)1−a(1− a)
n− i

n+ 1

≥c2(1− a) log n ,

where the second lines uses (1− x)b ≤ 1− bx for x ∈ [0, 1) and b ∈ (0, 1).

When c2 ≥ (3− a)/[c′(1− a)],

16L2L2e
2

(1− a)β3
i−aj−a exp

[
−c′((n+ 1)1−a − (i+ 1)1−a)

]
(n1−a − j1−a)

≲
L2L2

(1− a)β3
n−2

≤ L2L2

(1− a)β3
n−2a log n .

for large n.

When i ≥ n− c2n
a log n ≥ n/2, then total number of terms in the sum over k is at most

c2n
a log n, but i, j are both lower bounded by n/2. So

16L2L2e
2

β3
i−aj−a exp

[
−c′((n+ 1)1−a − (i+ 1)1−a)

] n∑
k=j+1

k−a

≲
L2L2

β3
n−2a(c2n

a log n)n−a

≤ L2L2

(1− a)β3
c2n

−2a log n

For the second term in Ri,j,k, the sum in (27) simplifies to

8L2L2

β3
i−2a

n∑
k=j+1

k−a exp
[
−c′((n+ 1)1−a − (k + 1)1−a)

]
exp

[
−2c′(k1−a − (i+ 1)1−a)

]
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≲
8L2L2

β3
i−2a

n∑
k=j+1

k−a exp
[
−c′((n+ 1)1−a − (i+ 1)1−a)

]
≲

L2L2

(1− a)β3
c2n

−2a log n .

where the final line uses the same argument as the first term. Therefore, we have the
following bound

n∑
k=j+1

exp
[
−c′((n+ 1)1−a − (k + 1)1−a)

]
Ri,j,k ≲

L2L2

(1− a)β3
c2n

−2a log n .

Lastly, to finish bounding (27) the contribution from ηj is

exp
[
−c′((n+ 1)1−a − (j + 1)1−a)

]
ηj

≤2βαj∥∇iθ̂j−1∥ exp
[
−c′((n+ 1)1−a − (j + 1)1−a)

]
≤4L

β
j−ai−a exp

[
−c′

(
j1−a − (i+ 1)1−a

)]
exp

[
−c′((n+ 1)1−a − (j + 1)1−a)

]
≲
4L

β
j−ai−a exp

[
−c′

(
(n+ 1)1−a − (i+ 1)1−a

)]
.

When i, j < n/2,

exp
[
−c′

(
(n+ 1)1−a − (i+ 1)1−a

)]
≲ exp

[
−c′

(
1− 2a−1

)
n1−a

]
≲ n−2a log n

for large n. When i, j ≥ n/2,

exp
[
−c′

(
(n+ 1)1−a − (i+ 1)1−a

)]
≤
(n
2

)−2a

≲ n−2a log n

for large n. Therefore, we have shown∥∥∥∇j∇iθ̂n

∥∥∥ ≲ c(L,L2, a, β, γ)n
−2a log n .

C.3 Proof of Proposition 5.3

Proof. Suppose Yi =
∑∞

j=1 βjZij + ϵi with Var(ϵi) = σ2ϵ . Let 1 < Jr < Js be two integers

and f̂r(Zi) =
∑Jr

j=1 β̂jZij , and f̂s(Zi) =
∑Js

j=1 β̂jZij , where

β̂j =
1

n

n∑
i=1

YiZi = βj + δj
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with

δj =
1

n

n∑
i=1

YiZi − βj =
1

n

n∑
i=1

[ϵiZi + f(Zi)Zi − βj ] ,

which satisfies Eδj = 0 and Var(δj) = σ2j /n for some σ2j ∈ [σ2ϵ , σ
2
ϵ + ∥f∥2∞].

Consider the difference for loss functions,

T =(Y0 − f̂r(Z0))
2 − (Y0 − f̂s(Z0))

2

=2ϵ0(f̂s(Z0)− f̂r(Z0)) +
[
2f(Z0)− f̂r(Z0)− f̂s(Z0)

] [
f̂s(Z0)− f̂r(Z0)

]
.

We are interested in the standard deviation of T . Let X = (Zi, Yi)
n
i=1,

Var(T ) = E [Var(T |X, Z0)] + Var [E(T |X, Z0)] .

For the first term

E [Var(T |X, Z0)]

=4σ2ϵE
[
f̂s(Z0)− f̂r(Z0)

]2
=4σ2ϵE

 Js∑
j=Jr+1

β̂jZ0j

2

=4σ2ϵE
Js∑

j,k=Jr+1

β̂jZ0j β̂kZ0k

=4σ2ϵE
Js∑

j=Jr+1

β̂2jZ
2
0j

≍4σ2ϵ

Js∑
j=Jr+1

(
β2j +

σ2j
n

)

≥4σ2ϵ

 Js∑
j=Jr+1

β2j +
Js − Jr
n

σ2ϵ

 .

If we regard σϵ as a positive constant, then

σ(r)ss ≳

 Js∑
j=Jr+1

β2j

1/2

+

√
Js − Jr√
n

.
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Now taking the ∇i operator. By construction, T ′ is the version of T obtained by replacing
(Zi, Yi) by an iid copy (Z ′

i, Y
′
i ), keeping everything else unchanged. To derive a simple

expression of ∇iT = T ′ − T , we first expand T

T =2ϵ0

Js∑
j=Jr+1

β̂jZ0j

+

−2

Jr∑
j=1

δjZ0j +

Js∑
j=Jr+1

(βj − δj)Z0j + 2
∞∑

j=Js+1

βjZ0j

 Js∑
j=Jr+1

β̂jZ0j

∇iT =2ϵ0

Js∑
j=Jr+1

(∇iδj)Z0j

+

−2

Jr∑
j=1

∇iδjZ0j −
Js∑

j=Jr+1

∇iδjZ0j

 Js∑
j=Jr+1

β̂jZ0j

+

−2

Jr∑
j=1

δjZ0j +

Js∑
j=Jr+1

(βj − δj)Z0j + 2

∞∑
j=Js+1

βjZ0j

 Js∑
j=Jr+1

∇iδjZ0j

=A1 +A2 +A3 ,

where ∇iδj = n−1(Y ′
i Z

′
ij − YiZij).

Since ϵ0 and Z0j are assumed sub-Weibull and E(Z0j |Z01, . . . , Z0,j−1) for all j, we can use
Lemma A.3 to obtain that

A1 is

(√
Js
n

)
-SW

A2 is

√
Js
n

(
∥βJr+1,Js∥+

√
Js√
n

)
-SW

A3 is

(√
Js√
n

+ ∥βJr+1,∞∥
) √

Js
n

-SW

where

∥βa,b∥2 =
b∑

j=a

β2j .

Since βj ≍ j−
1+a
2 for some a > 0,

∥βr,∞∥ ≍
(∫ ∞

Jr

x−1−adx

)1/2

≍ J−a/2
r ,
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and
∥βJr+1,Js∥ ≍ J−a/2

r

provided that Js ≥ cJr for some constant c > 1. Therefore

σ(r)ss ≳ J
−a/2
r +

√
Js√
n
,

and first order stability condition reduces to

√
Js
n

+

√
Js
n

(√
Js√
n

+ J−a/2
r

)
≪ 1√

n

(
J−a/2
r +

√
Js√
n

)
which requires

JsJ
a/2
r ≪ n.

Now for second order stability. For k ̸= i,

∇k(∇iT ) =

−2

Jr∑
j=1

∇iδjZ0j −
Js∑

j=Jr+1

∇iδjZ0j

 Js∑
j=Jr+1

∇kδjZ0j

+

−2

Jr∑
j=1

∇kδjZ0j −
Js∑

j=Jr+1

∇kδjZ0j

 Js∑
j=Jr+1

∇iδjZ0j

=B1 +B2 .

Again, using Lemma A.3, then B1 and B2 are Js
n2 -SW. Then the second order stability

reduces to
Js
n2

≪ n−3/2

(
J−a/2
r +

√
Js√
n

)
which is equivalent to

JsJ
a/2
r ≪ n1/2 .

D Proof for deterministic centering

D.1 Preparation

In preparation for the proof, we first take a closer look at some intermediate quantities
involved in forming the asymptotic covariance term. Intuitively, the variance contributed
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by Xi in the term ℓr(Xj ;X−vj ) for j /∈ Ivi is from the variability of Rr(X−vj ). Based on
this intuition, we can reduce (12) to

ℓr(Xi;X−vi) +
∑
j /∈Ivi

Rr(X−vj ) =: gr,i . (28)

The quantities in (28) still involve many sample points Xj (j ̸= i). In order to pinpoint the
variance contributed by Xi alone, we consider the following difference versions of gr,i:

E(gr,i|Fi)− E(gr,i|Fi−1) , and gr,i − E(gr,i|X−i) ,

where Fi is the σ-field generated by (X1, ..., Xi) and X−i = (X1, ..., Xi−1, Xi+1, ..., Xn). The
reason to consider these two differences is rather technical, where the former allows us to
express gr,i as the sum of a sequence of martingale increments {E(gr,i|Fi)−E(gr,i|Fi−1) : i =
1, ..., n}, and the latter provides E(gr,i|X−i) as a leave-one-out approximation to gr,i with a
manageable difference.

Let
Crs,i = [E(gr,i|Fi)− E(gr,i|Fi−1)]

[
gs,i − E(gs,i|X−i)

]
. (29)

In Lemma D.4 we will show that
ECrs,i ≈ ϕrs . (30)

A key step in the proof is to ensure that this covariance is indeed contributed mostly by Xi,
which amounts to controlling

E(Crs,i|X−i)− E(Crs,i) .

It can be shown that ∥E(Crs,i|X−i) − E(Crs,i)∥2 is small using the standard Efron-Stein
inequality. However, the high-dimensionality requires some uniform bound of the realized
values E(Crs,i|X−i) − E(Crs,i) over the triplet (r, s, i). This is established using our sub-
Weibull conditions in Lemma D.3.

D.2 Proof of Theorem 6.1

Proof of Theorem 6.1. Throughout this proof, the notation may be different from that in
the proof of Theorem 3.1, especially for W and Z, due to the different centering and scaling.

Let Y = (Y1, ..., Yp) =
∑n

i=1 n
−1/2εi, where εi

iid∼ N(0,Φ). Define εi as the vector (εi : 1 ≤
i ≤ n) with the ith element εi replaced by its iid copy ε′i. Note that each εi = (ε1,i, ..., εp,i)
is itself a p-dimensional vector.

Let Fi be the σ-field generated by {(Xj) : j ≤ i}, and for any function f acting on X, define

∇if = f(X)− f(Xi)
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and
∆if = E(f |Fi)− E(f |Fi−1) = E(∇if |Fi) . (31)

Define quantities

Wr =
1√
n

n∑
i=1

{ℓr(Xi,X−vi)−Rr} ,

W i
r = E(Wr|X−i) .

where Wr is the deterministically centered quantity for which we would like to establish a
Gaussian comparison, and W i

r is the corresponding leave-one-out version.

We then have the following useful facts

Wr −W i
r =Wr − E(Wr(X

i)|X) = E(∇iWr|X) , (32)

and

∇iWr =n
−1/2(∇igr,i +Dr,i) (33)

with Dr,i, gr,i defined in (4) and (28), respectively.

Similarly, for t ∈ (0, 1), consider interpolating variable

Zr(t) =
√
tWr +

√
1− tYr ,

the leave-one-out version

Zir(t) =
√
tW i

r +
√
1− t

∑
j ̸=i

εr,j/
√
n .

and the martingale increment with respect to the filtration {Fi : 1 ≤ i ≤ n},

∆iZr(t) =
√
t(∆iWr) +

√
1− tεr,i/

√
n .

Consider h : Rp 7→ R with quantities M2 and M3 defined as in (15) and (16). In the
following we will focus on controlling E [h(W)− h(Y)], where the bold font symbols
represent the corresponding p-dimensional vectors: W = (W1, ...,Wp), Y = (Y1, ..., Yp), and
Zi(t) = (Zi1(t), ..., Z

i
p(t)), etc. The only exception is X, which corresponds to the collection

of n iid samples (X1, ..., Xn) ∈ X n.

Write d∆iZr(t)
dt = Z ′

r,i(t). By Taylor expansion:

E
dh(Z(t))

dt
=

p∑
r=1

n∑
i=1

E[∂rh(Zi(t))Z ′
r,i(t)]
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+

p∑
s=1

p∑
r=1

n∑
i=1

E[∂s∂rh(Zi(t))
(
Zs(t)− Zis(t)

)
Z ′
r,i(t)]

+

p∑
u=1

p∑
s=1

p∑
r=1

n∑
i=1

E
{
[Zs(t)− Zis(t)][Zu(t)− Ziu(t)]

×
[∫ 1

0
(1− v)∂u∂s∂rh(Z

i(t) + vZi(t))dv

]
Z ′
r,i(t)

}
. (34)

The first term equals 0 because Zi(t) does not involve (Xi, εi), and EXi,εiZ
′
r,i(t) = 0.

The second term can be written as

p∑
s=1

p∑
r=1

n∑
i=1

E[∂s∂rh(Zi(t))
(
Zs(t)− Zis(t)

)
Z ′
r,i(t)]

=
1

2

p∑
s=1

p∑
r=1

n∑
i=1

E
{(

∆iWr√
t

− εr,i√
n
√
1− t

)
×
[√

t
(
Ws −W i

s

)
+

√
1− t

εs,i√
n

]
∂s∂rh(Z

i(t))

}
=
1

2

p∑
s=1

p∑
r=1

n∑
i=1

E
{[
∆iWr

(
Ws −W i

s

)
− ϕrs/n

]
∂s∂rh(Z

i(t))
}

=
1

2

p∑
s=1

p∑
r=1

n∑
i=1

E
{
[E(∇iWr|Fi)E(∇iWs|X)− ϕrs/n] ∂s∂rh(Z

i(t))
}

=
1

2n

p∑
s=1

p∑
r=1

n∑
i=1

E
{
[Crs,i − ϕrs +Brs,i] ∂s∂rh(Z

i(t))
}
, (35)

where Crs,i = E(∇igr,i|Fi)E(∇igs,i|X) is the same as defined in (29) and

Brs,i =E(∇igr,i|Fi)E(Ds,i|X) + E(Dr,i|Fi)E(∇igs,i|X) + E(Dr,i|Fi)E(Ds,i|X) .

In (35), the first equation follows by construction of Z ′
r,i(t) and Z

i
s; the second equation

follows by taking a conditional expectation over εi and the definition of ϕrs; the third and
fourth equations follow from (32) and (33), respectively.

By Assumptions 2 and 5 and lemma B.2 we have Brs,i is [(1 + ϵR)ϵℓ]-SW. Using the same
argument as in (19), we have

1

2n
E
∑
rs,i

|Brs,i∂s∂rh(Zi(t))| ≤ Õ [(1 + ϵR)ϵℓM2] . (36)
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Define C̄rs,i = E(Crs,i|X−i). Now we are left with the term

1

2n

p∑
s=1

p∑
r=1

n∑
i=1

E
{
[Crs,i − ϕrs] ∂s∂rh(Z

i(t))
}

=
1

2n

p∑
s=1

p∑
r=1

n∑
i=1

E
{[
C̄rs,i − ϕrs

]
∂s∂rh(Z

i(t))
}

=
1

2n

p∑
s=1

p∑
r=1

n∑
i=1

E
{[
C̄rs,i − ECrs,i + ECrs,i − ϕrs

]
∂s∂rh(Z

i(t))
}

where the equality holds by taking conditional expectation given X−i and realizing Zi(t) is
independent of Xi. By Lemma D.3, C̄rs,i − ECrs,i is ϵℓ(1 + ϵR)-sub-Weibull. Repeating the
truncation argument used in (19) we get

1

2n

p∑
s=1

p∑
r=1

n∑
i=1

E
{[
C̄rs,i − ECrs,i

]
∂s∂rh(Z

i(t))
}

≤Õ [ϵℓ(1 + ϵR)M2] . (37)

We still need to control ECrs,i − ϕrs, which is provided by Lemma D.4. Thus we obtain

1

2n

p∑
s=1

p∑
r=1

n∑
i=1

E
{
|ECrs,i − ϕrs| × |∂s∂rh(Zi(t))|

}
≤ cϵℓM2 , (38)

for some universal constant c.

Combining (36), (37), and (38) into (35) we conclude that the second term in (34) is upper
bounded in absolute value by (using the simplifying assumption ϵℓ < 1.)

Õ [ϵℓ(ϵR + 1)M2] . (39)

The third term in (34) can be controlled using the following equation

Zr(t)− Zir(t) =
1√
n
E
[
gr,i

√
t+Dr,i

√
t+ εr,i

√
1− t

∣∣∣X] , (40)

which holds by combining (32) and (33), and, by Assumptions 2 and 5 and lemma B.2, is
n−1/2(1 + ϵR)-sub-Weibull.

Similarly, by (31) and (33) we have

Z ′
r,i(t) =

1

2
√
n

(
E(∇igr,i +Dr,i|Fi)√

t
− εr,i√

1− t

)
,
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and hence
Z ′
r,i(t)

n−1/2ηt(1 + ϵR)

is sub-Weibull, where ηt is defined in (18).

Putting together the sub-Weibull properties of Zr(t)− Zir(t) and Z
′
r,i(t), we have

[Zs(t)− Zis(t)][Zu(t)− Ziu(t)]Z
′
r,i(t)

n−3/2ηt(1 + ϵR)3

is sub-Weibull. Therefore, applying the truncation argument in (19) again in the third term
of (34), we obtain an upper bound of

Õ
{
n−1/2ηt(1 + ϵR)

3M3

}
. (41)

Combining (39) and (41) with (34) and integrate the latter over t ∈ (0, 1) we obtain

|E[h(W)− h(Y)]| ≤ Õ
[
ϵℓ(1 + ϵR)M2 + n−1/2(1 + ϵR)

3M3

]
. (42)

Again, using Lemma B.4 and the anti-concentration result (Chernozhukov et al., 2013,
Lemma 2.1), we have for any β > 0

sup
z

∣∣∣P(max
r
Wr ≤ z

)
− P(max

r
Yr ≤ z)

∣∣∣ (43)

≤ Õ
[
ϵℓ(1 + ϵR)β

2 + n−1/2(1 + ϵR)
3β3 + β−1

]
≤ Õ

(
[ϵℓ(1 + ϵR)]

1/3 ∨ n−1/8(1 + ϵR)
3/4
)

(44)

where the last inequality follows by choosing β = min([ϵℓ(1 + ϵR)]
−1/3, n1/8(1 + ϵR)

−3/4).

D.3 Proof of variance estimation with deterministic centering (Theo-
rem 6.2)

The claimed result in Theorem 6.2 follows directly from the two following lemmas.

Lemma D.1. Under Assumptions 1, 2, 5 and 6,

sup
1≤r,s≤p

∣∣∣∣n22 E
(
∇iR̂cv,r∇iR̂cv,s

)
− ϕrs

∣∣∣∣ = O (ϵℓ(1 + ϵR)) .
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Lemma D.1 shows that the variance of ∇iR̂cv is entry-wise close to the true covariance
matrix Φ. The next result further reduces this variance term to the proportion contributed
solely by Xi.

Lemma D.2. Under Assumptions 1, 2, 5 and 6,

n2 sup
1≤r,s≤p

∣∣∣E [∇iR̂cv,r∇iR̂cv,s|X−vi

]
− E

[
∇iR̂cv,r∇iR̂cv,s

]∣∣∣ ≲ Õ [ϵℓ(1 + ϵR)] .

Proof of Lemma D.1. Let fr = nR̂cv,r =
∑n

i=1 ℓr(Xi;X−vi). For −1 ≤ j ≤ n, j ̸= i, define

Ej,i =


F0 , j = −1
σ(Xi, X

′
i) , j = 0

σ(X1, ..., Xj , Xi, X
′
i) , 1 ≤ j ≤ n .

and

E−
j,i =

{
Ej−1,i , j ̸= i+ 1 ,
Ei−1,i , j = i+ 1 .

Then {Ej,i : −1 ≤ j ≤ n, j ̸= i} is a filtration.

Use notation ℓr,i = ℓr(Xi;X−vi), ℓ̄r,i = ℓ̄r(Xi), ℓ
′
r,i = ℓr(X

′
i;X−vi), ℓ̄

′
r,i = ℓ̄r(X

′
i), and

R̄r,i = R̄r(Xi).

Using the decomposition
∇ifr = ∇iKr,i +∇iRr,i +Dr,i

we get

∇ifr∇ifs =∇iKr,i∇iKs,i +∇iRr,i∇iRs,i +∇iKr,i∇iRs,i +∇iRr,i∇iKs,i

+Dr,i∇iKs,i +Ds,i∇iKr,i +Dr,i∇iRs,i +Ds,i∇iRr,i +Dr,iDs,i . (45)

For the first term

E∇iKr,i∇iKs,i

=E∇iℓr,i∇iℓs,i

=Cov
{
E
[
∇iℓr,i|Xi, X

′
i

]
, E

[
∇iℓs,i|Xi, X

′
i

]}
+ E

{
Cov

[
∇iℓr,i, ∇iℓs,i|Xi, X

′
i

]}
=2Cov(ℓ̄r,i, ℓ̄s,i) + E

{
Cov

[
∇iℓr,i, ∇iℓs,i|Xi, X

′
i

]}
where the second term is upper bounded by∣∣E{Cov [∇iℓr,i, ∇iℓs,i|Xi, X

′
i

]}∣∣
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≤1

2
E
{
Var

[
∇iℓr,i|Xi, X

′
i

]
+Var

[
∇iℓs,i|Xi, X

′
i

]}
≤2E {Var(ℓr,i|Xi) + Var(ℓs,i|xi)}

≤
∑
j ̸=Ivi

E(∇jℓr,i)
2 + E(∇jℓs,i)

2

≤2ϵ2ℓ

where the second last step used Efron-Stein inequality.

So we conclude ∣∣E∇iKr,i∇iKs,i − 2Cov(ℓ̄r,1, ℓ̄s,1)
∣∣ ≤ 2ϵ2ℓ (46)

For the second term in (45), using the martingale decomposition

∇iRr,i =
∑

0≤j≤n,j ̸=i
E(∇iRr,i|Ej,i)− E(∇iRr,i|E−

j,i)

we have, by orthogonality between martingale increments,

E∇iRr,i∇iRs,i

=E
∑

0≤j≤n,j ̸=i

[
E(∇iRr,i|Ej,i)− E(∇iRr,i|E−

j,i)
] [

E(∇iRs,i|Ej,i)− E(∇iRs,i|E−
j,i)
]

=2ñ2Cov(R̄r(X1), R̄s(X1)) + E
∑

1≤j≤n,j ̸=i
[E(∇j∇iRr,i|Ej,i)E(∇j∇iRs,i|Ej,i)]

and the remainder term satisfies∣∣∣∣∣∣E
∑

1≤j≤n,j ̸=i
[E(∇j∇iRr,i|Ej,i)E(∇j∇iRs,i|Ej,i)]

∣∣∣∣∣∣
≤1

2

∑
1≤j≤n,j ̸=i

[
∥∇j∇iRr,i∥22 + ∥∇j∇iRs,i∥22

]
≤ϵ2ℓ

Hence we have ∣∣E∇iRr,i∇iRs,i − 2ñ2Cov(R̄r,1, R̄s,1)
∣∣ ≤ ϵ2ℓ . (47)

For the third term in (45), using the martingale decomposition of ∇iKr,i and ∇iRs,i, we
have

E∇iKr,i∇iRs,i
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=E
[
E(∇iKr,i|Xi, X

′
i)E(∇iRs,i|Xi, X

′
i)
]
+

∑
1≤j≤n,j ̸=i

E [E(∇j∇iKr,i)E(∇j∇iRs,i)]

=2ñCov(ℓ̄r,1, R̄s,1) +
∑

1≤j≤n,j ̸=i
E [E(∇j∇iKr,i)E(∇j∇iRs,i)]

where the remainder term satisfies∣∣∣∣∣∣
∑

1≤j≤n,j ̸=i
E [E(∇j∇iKr,i)E(∇j∇iRs,i)]

∣∣∣∣∣∣
≤

∑
1≤j≤n,j ̸=i

∥∇j∇iKr,i∥2∥∇j∇iRs,i∥2

≤ϵ2ℓ .

The fourth term can be bounded similarly. So we have∣∣∇iKr,i∇iRs,i +∇iRr,i∇iKs,i − 2ñCov(ℓ̄r,1R̄s,1)− 2ñCov(R̄r,1, ℓ̄s,1)
∣∣ ≤ 2ϵ2ℓ . (48)

For the other terms in (45), according to Lemma B.2, Assumption 2, and Assumption 5,
we have ∥Dr,i∥2 ≲ ϵℓ, ∥∇iKr,i∥2 ≲ 1, and ∇iRr,i ≤ ϵR, so that the last five terms in (45)
are bounded by, up to constant factor, ϵℓ(1 + ϵR). The claimed result is proved.

Proof of Lemma D.2. We follow the notation in the proof of Lemma D.1. By the symmetry
assumption of ℓ, we can assume i > ñ without loss of generality.

Let M = ∇ifr∇ifs − ϕrs, and Mj = E(M |Fj)− E(M |Fj−1) = E(∇jM |Fj) for j = 1, ..., ñ.
The main task in the proof is to control ∥Mj∥ψα , which further reduces to controlling the
norm of ∇j(∇ifr∇ifs).

To begin with, we first write

∇j(∇ifr∇ifs) = ∇j∇ifr∇ifs +∇ifs(X
j)∇j∇ifr .

Use the decomposition ∇ifr = ∇igr,i +Dr,i we have

∥E (∇ifr∇ifs|X−vi)− E(∇ifr∇ifs)∥
≤∥E [∇igr,i∇igs,i|X−vi ]− E(∇igr,i∇igs,i)∥

+ ∥E [∇igr,iDs,i|X−vi ]− E(∇igr,iDs,i)∥
+ ∥E [Dr,i∇igs,i|X−vi ]− E(Dr,i∇igs,i)∥
+ ∥E [Dr,iDs,i|X−vi ]− E(Dr,iDs,i)∥ .

Using the fact that for any random variable W

∥W − EW∥q ≤ 2∥W∥q , ∀ q ≥ 1 ,
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by assumption Dr,i is ϵℓ-SW, ∇igr,i is (1 + ϵR)-SW, so the sum of the last three terms in
the above expression is ϵℓ(1 + ϵR)-SW.

Now for the first term, LetM = E [∇igr,i∇igs,i|X−vi ]−E(∇igr,i∇igs,i) andMj = E(M |Fj)−
E(M |Fj−1) = E(∇jM |Fj) for 1 ≤ j ≤ ñ. The main remaining task in the proof is to control
the tail of Mj .

For any ℓq norm ∥ · ∥ with q ≥ 1,

∥Mj∥ = ∥E(∇jM |Fj)∥ ≤ ∥∇jM∥
= ∥∇j [E(∇igr,i∇igs,i)|X−vi ]∥
≤∥∇j(∇igs,i∇igr,i)∥
=
∥∥∇j∇jgs,i∇igs,i +∇igs,i(X

j)∇j∇igs,i
∥∥

≤2n−1/2ϵℓ(1 + ϵR) .

Then using Lemma A.3 we conclude M is ϵℓ(1 + ϵR)-SW .

D.4 Auxiliary lemmas

Lemma D.3 (Bounding C̄rs,i−ECrs,i). Under the conditions in Theorem 6.1, C̄rs,i−ECrs,i
is ϵℓ(1 + ϵR)-SW.

Proof of Lemma D.3. For j ̸= i, and function f acting on X, let Xj,−i be the vector
obtained by replacing Xj in X−i with its iid copy X ′

j . Then by Jensen’s inequality, we have,
for q ≥ 1

∥∇jE(f |X−i)∥qq =E
{
E(f |X−i)− E

[
f(Xj,−i)|Xj,−i]}q

=E
{
E
[
f(X)− f(Xj)|X−i, X ′

j

]}q
≤∥∇jf∥qq . (49)

Take f to be Crs,i, we have for j ̸= i.

∥∇jC̄rs,i∥q ≤ ∥∇jCrs,i∥q .

Next we control ∥∇jCrs,i∥q. By definition,

∇jCrs,i =∇j [E(∇igr,i|Fi)E(∇igs,i|X)]

= [∇jE(∇igr,i|Fi)]E(∇igs,i|X) + [∇jE(∇igs,i|X)]
{
E
[
∇igr,i(X

j)|Fi(Xj)
]}

. (50)

By Proposition A.1 and definition of ϵℓ and ϵR,

∇j∇igr,i = ∇j∇iℓr(Xi;X−vi) +
∑
k/∈Ivi

∇j∇iR(X−vk) is n−1/2ϵℓ-SW , (51)
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and
∇igr,i = ∇iℓr(Xi;X−vi) +

∑
k/∈Ivi

∇iR(X−vk) is (1 + ϵR)-SW . (52)

Combining (51) and (52) with (50), and applying Proposition A.1 we conclude that∇jCrs,i is
n−1/2ϵℓ(1+ϵR)-SW. For the same reason as (49), we have∇jC̄rs,i is n

−1/2ϵℓ(1+ϵR)-SW. Then
the desired result follows from applying Lemma A.3 to the martingale sequence obtained by
taking conditional expectation of C̄rs,i with respect to the filtration (Fj,i : 1 ≤ 0 ≤ n, j ̸= i),
where Fj,−i is the sigma field generated by (Xk : 1 ≤ k ≤ j, k ̸= i).

Lemma D.4 (Bounding ECrs,i − ϕrs). There exists a universal constant c > 0 such that
for all (r, s, i) ∈ [p]2 × [n], |ECrs,i − ϕrs| ≤ cϵℓ.

Proof of Lemma D.4. Since Fi is a sub σ-field of X, and ∇jgr,i is centered, we have

ECrs,i = E [E(∇igr,i|Fi)E(∇igs,i|Fi)] (53)

For j ∈ {1, ..., i− 1}, let Hj,i be the σ-field generated by (X1, ..., Xj , Xi). Define H0,i as the
σ-field generated by Xi, and H−1,i be the trivial σ-field. Then we can write the martingale
decomposition of E(∇igr,i|Fi) as follows

E(∇igr,i|Fi) =
i−1∑
j=0

E(∇igr,i|Hj)− E(∇igr,i|Hj−1) .

Apply this decomposition to both E(∇igr,i|Fi) and E(∇igs,i|Fi) in (53), we get

ECrs,i =E
i−1∑
j,k=0

[E(∇igr,i|Hj)− E(∇igr,i|Hj−1)] [E(∇igs,i|Hk)− E(∇igs,i|Hk−1)]

=E
i−1∑
j=0

[E(∇igr,i|Hj)− E(∇igr,i|Hj−1)] [E(∇igs,i|Hj)− E(∇igs,i|Hj−1)] , (54)

where the second equality holds because H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hi−1 is a filtration.

When j = 0,

E {[E(∇igr,i|Hj)− E(∇igr,i|Hj−1)] [E(∇igs,i|Hj)− E(∇igs,i|Hj−1)]}
=E {[E(gr,i|Xi)− Egr,i] [E(gs,i|Xi)− Egs,i]}
=ϕrs . (55)

When j > 0, we have, using Jensen’s inequality and (51),

∥E(∇igr,i|Hj)− E(∇igr,i|Hj−1)∥2 = ∥E(∇j∇igr,i|Hj)∥2
≤∥∇j∇igr,i∥2 ≲ n−1/2ϵℓ . (56)

The claim follows by combining (55), (56) with (54).
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